
Note for seam sarving
October 22, 2015

• Voxel/3d image Marching Cubes−−−−−−−−−−→ Mesh

“voxel” = “volume” + “pixel”; “pixel” = “picture” + “element”.

• Def. of an isosurface

2D:
z = f(x, y), {(x, y) | f(x, y) = τ}

3D:
w = f(x, y, z), {(x, y, z) | f(x, y, z) = τ}

, where τ is some constant value (that is interested by the observer).

• .raw format

It’s in an X by Y by Z layout. The spacial locations of the data points are implicit (http:
//www.paraview.org/Wiki/ParaView/Data_formats).

For example, if the binary file contains numbers (after being read in via C++ file stream) 1,
2, ... , 12, and it represents a 2 by 2 by 3 voxel (assume WIDTH by HEIGHT by DEPTH), it should
be printed out like this:

the 0th y-x plane
1 2
3 4
the 1th y-x plane
5 6
7 8
the 2th y-x plane
9 10
11 12

To store the voxel in a 3d array in C/C++, the indexing format is expected to be:

I[z][y][x]

Page 1 of 40

http://www.paraview.org/Wiki/ParaView/Data_formats
http://www.paraview.org/Wiki/ParaView/Data_formats

Operator in 3d

1 Energy function

The gradient of an input 3d image (voxel) I is

GI =
(
∂

∂x
I, ∂

∂y
I, ∂

∂z
I
)
∈ R3

The energy function we use here is the L1-norm of the gradient:

e1(I) = ||GI|| =
∣∣∣∣ ∂∂xI

∣∣∣∣+ ∣∣∣∣ ∂∂y I
∣∣∣∣+ ∣∣∣∣ ∂∂z I

∣∣∣∣
it’s a mapping R3 → R.

2 Definition of the 2d seam

Let I be a w×h× d (WIDTH by HEIGHT by DEPTH, which correspond to x, y, z respectively)
volume. To shrink w (the x-dimension) by 1 pixel, we define a yz-seam (or x-seam, in
correspondence with the denotation) as:

sx =
{
sxjk

} h, d

j=1, k=1
= {(x(j, k), j, k)} h, d

j=1, k=1,

s.t. ∀j, k, | x(j, k)− x(j − 1, k) | ≤ 1 and
| x(j, k)− x(j, k − 1) | ≤ 1

where x(·) is a R2 → Rmapping: {(1, 1), · · · , (h, d)} → [1, · · · , w]. This means for each yz-seam,

• it consists of h× d pixels;
• its projection onto xOy plane is an 8-connected region of pixels, expanding in y-direction (and

vice versa for projection onto xOz plane)

3 Optimal seam: minimal total energy cost

We look for the optimal yz-seam sx∗ that minimizes the total energy cost:

sx∗ = min
s

h∑
j=1

d∑
k=1

e1
(
I(sxjk)

)

Page 2 of 40

4 Dynamic programming: cumulative minimum energy M(i, j,k)

For the yz-seam,

1

M(i, j, k) = e1(i, j, k) + min{ M(i− 1, j − 1, k), M(i− 1, j, k), M(i− 1, j + 1, k),
M(i− 1, j, k − 1), M(i− 1, j, k + 1) }

or, # 2

M(i, j, k) = e1(i, j, k)
+ min{M(i− 1, j − 1, k), M(i, j − 1, k), M(i+ 1, j − 1, k)}

M(i− 1, j, k − 1), M(i, j, k − 1), M(i+ 1, j, k − 1) }

or, # 3

M(i, j, k) = e1(i, j, k) + min{ M(i− 1, j − 1, k) + M(i− 1, j, k − 1),
M(i, j − 1, k) + M(i, j, k − 1),
M(i + 1, j − 1, k) + M(i + 1, j, k − 1) }

i.e., to pick the minimal value among the 3 pairs of sums — each pair of sum represents a
position in x-dimension, which intrinsically treats the y, z dimensions equally.

Figure 1: Computing M , where the white pixel stands for M(i, j, k), or M[z][y][x]

Both computing M and back-tracking (to get the 2d seam) are done in a level-by-level
manner. This also comes from the implicit expectation “when shrinking in x dimension, y and
z are treated equally”.

* Illustration of how the two processes work (to be completed if this approach is
approved.)

Page 3 of 40

Figure 2: Indices matrix of a DEPTH× HEIGHT yz-seam.
The top surface depicts the x positions of the seam.

Figure 3: Test on the 301×324×56 lobster.raw.
Average energy of the 2d seam here is 0.0 (< 5.998, that of the whole image), which means the
program finds the least-varying (non-varying?) pixels in the voxel, during back-tracking for

this 2d seam.

Page 4 of 40

Figure 4: Test on the 256×256×128 engine.raw.
Average energy of 2d seam: 0.293472;
Average energy of the image: 11.8278.

Figure 5: Test on the 64×64×64 engine.raw.
Average energy of 2d seam: 0.03662;
Average energy of the image: 1.95015.

Page 5 of 40

Carving a 2d seam

As for carving a yz-seam, we have

• the 3d image array I[DEPTH][HEIGHT][WIDTH];

• a 2d array yz_seam[DEPTH][HEIGHT] storing the x indices of the yz-seam.

We are going to process DEPTH × HEIGHT “rows” in x dimension — for each row, we
remove the element that is on the 2d seam, then “shift” all element(s) behind it
(farther from yOz plane) by one pixel towards the yOz plane.

Carve Shift

Figure 6: Two steps (conceptual) to carve a yz-seam.

for (z=0; z<DEPTH; z++) {
for (y=0; y< HEIGHT ; y++) {

int a = yz_seam_indices [z][y];

// Shift element (s) I[z][y][a+1... WIDTH -1] to
//I[z][y][a... WIDTH -2]

// Set I[z][y][WIDTH -1] as ‘\0’

}
}

Page 6 of 40

Analysis: on making carving faster

There are three major arrays in this seam carving operator: I, e1I and M, all in dimensions
DEPTH × HEIGHT × WIDTH. A test on execution time of each of the major steps in the pipeline
is done on the 256× 256× 128 ‘engine.raw’:

Table 1: Execution time (in milliseconds) for each part of the program.

Stuff to do Time elapsed
1 3d arrays allocation ≈ 10
2 Read raw image ≈ 300
3 Compute energy e1I ≈ 200
4 Compute cumulative energy M ≈ 150
5 Back track (to find 2d seam) ≤ 10
6 Write result to .raw ≈ 100

Observation:

1. #3–5 are computation-involved, which (the functions) would be repeatedly called when
carving multiple 2d seams.

2. #3 and 4 take much longer, as they’re both “point-processing”-like and therefore take
O(n3). These two parts should be further optimized.

3. Since “back track” does not take too much time (and considering the way it works), we
can keep it as it is.

Page 7 of 40

Experiment on carving multiple yz-seams

First we do an experiment on ‘nucleon.raw’ in a more detailed manner, considering its
size (41) and shape (the same length in all three dimensions). In Table 2 we list the result of
execution time and avgerage energy when different numbers of yz-seam(s) is/are carved
from ‘nucleon.raw’.

Table 2: Experiment on ‘nucleon.raw’ (41× 41× 41)

1) Execution time is the average of 10 results recorded;
2) The approach is deterministic so “avg. energy”

remains the same for each run.

of yz-seam(s) carved Execution time (ms) Avg. energy of pixels
0 —— 22.4744
1 19.2366 23.0413
2 28.2732 23.6146
4 35.3656 24.8127
6 44.8707 26.1060
8 54.8796 27.5076
10 62.8108 29.0130
15 83.8391 33.0852
20 103.0176 37.3794
25 115.1808 41.8958
30 127.1187 46.5929

Figure 7: Execution time and average energy vs. number of yz-seam(s) carved.

Page 8 of 40

Original size (intact)

5 yz-seams carved 10 yz-seams carved

15 yz-seams carved 20 yz-seams carved

25 yz-seams carved 30 yz-seams carved

Figure 8: Paraview display of ‘nucleon’ object when multiple yz-seams have been carved.

Page 9 of 40

yz view

xy view yz view

xz view

Figure 9: Three-view screenshots, under the scenario of 30 yz-seams get carved away.

Page 10 of 40

Here’s the result on ‘lobster.raw’:

original -100

-25 -125

-50 -150

-75 -175

Figure 10: Paraview display of ‘lobster’ object when multiple yz-seams have been carved.

Page 11 of 40

original -48 -94

-5 -49 -120

-14 -57 -136

-28 -66 -177

-33 -74 -200

Figure 11: Experiment on a zx-slice (at y=128) of “BostonTeapot”

Page 12 of 40

June 2 —

1. Different energy definitions, cumulative energy schemes

Here illustrates an experiment on
1) three types of energy function (L1-norm/L2-norm/L∞-norm of gradient), and
2) four schemes to compute the cumulative energy matrix M .

original

L1-norm L2-norm L∞-norm

energy+min_of_3 min_of_4 max{energy, min_of_3} max_of_4

L1-norm

L2-norm

L∞-norm

Figure 12: “Two-circle”, 75% in width (horizontal) is seam-carved

Page 13 of 40

original

L1-norm L2-norm L∞-norm

energy+min_of_3 min_of_4 max{energy, min_of_3} max_of_4

L1-norm

L2-norm

L∞-norm

Figure 13: “Lobster”, 50% in width (horizontal) is seam-carved

What’s new in the 2d code:

• ‘e’/‘E’ key to display color-mapped energy (and press again to switch back);

• ‘r’/‘R’ key to reload.

• ‘1’ to use L1-norm of gradient (the default, when the program starts);

• ‘2’ to use L2-norm of gradient;

• ‘3’ to use L∞-norm of gradient. (‘2’/‘3’ is probably followed by the ‘r’/‘R’ key.)

Page 14 of 40

2. Summary of related papers

2008

(1) Fast Image/Video Upsampling (ACM Transactions on Graphics) —— to upsample local
regions, getting a “magnifying” effect. Here, seam carving is mentioned as one of the ways to
do upsampling that do not use patch information.

+ Clue: perform upsampling/enlarging on the 3d object (or part of it).

(2) Optimized Scale-and-Stretch for Image Resizing (ACM Transactions on Graphics)
—— a (content-preserving) warping method which first partitions the original image into a grid
mesh (many “quad”s), then deforms it to the target dimensions.

Gives better results than (improved) seam carving and is cited 90 times.

+ Clue: (1) partitioning/segmentation-based seam carving on 3d image;
(2) “significant map” (gradient×saliency), and “forward energy”, to replace gradi-
ent.

2009

(3) Optimized Image Resizing Using Seam Carving and Scaling (ACM Transactions on Graph-
ics) —— first do seam carving and then scaling, optimizing a well-defined image distance
function. It protects important regions and visual effect, but runs slower (40-180s to resize a
500×500 to half size).

+ Clue: could we have a definition of “object protection” for the 3d image, by
measuring some “distance function” between I and T? This may include feature
extraction that aligns two images to two features with the same dimension.

(4) CONTEXT SALIENCY BASED IMAGE SUMMARIZATION (IEEE International Con-
ference on Multimedia and Expo) —— based on “content saliency” and a grid representation,
to warp the original image to a smaller “summarization”. Gives better result on some exam-
ples than seam carving, but the work seems to be on outside the object (i.e., removing the
surrounding background).

+ Clue: the usage of “saliency”.

2010

(5) Scene Carving: Scene Consistent Image Retargeting (ECCV) —— generalize seam
carving by using a user-provided relative depth map, to preserve scene consistency. It first
splits the image (the scene) into multiple layers.

+ Clue: maybe to create a depth map 3d matrix at each pixel of the 3d image, as
an alalogy, as an extra feature added to seam carving process?

2011

(6) A Distortion-Sensitive Seam Carving Algorithm for Content-Aware Image Resizing (Jour-
nal of Signal Processing Systems) —— use local gradient information along with a thresholding
technique to guide the seam selection; a mechanism to halt seam carving when further process-
ing would introduce unacceptable visual distortion in the resized image; anti-aliasing filter to
reduce the artifacts cauesed by seam removal.

Page 15 of 40

+ Clue: thresholding the gradient energy; taking an average of two adjacent “columns”
when carving a seam.

(7) Scale and Object Aware Image Retargeting for Thumbnail Browsing (IEEE International
Conference on Computer Vision) —— Cyclic Seam Carving (CSC); to augment the energy
function with the proposed scale and object aware saliency.

2012

(8) Live Image Composing (SIGGRAPH Asia) —— to compose two images together, by
first finding a boundary using seam carving and then using Poission image editing to obtain
seamless composed result.

+ Clue: application related to object composing/connecting in 3d images.

2013

(9) Depth-Aware Image Seam Carving (IEEE Transactions on Cybernetics) —— take ad-
vantage of modern depth camera to improve seam carving, by cutting the near objects less
seams while removing distant objects more seams.

+ Clue: introduction of the depth map.

2014

(10) Saliency-Based Parameter Tuning for Tone Mapping (European Conference on Visual
Media Production) —— a parameter-tuning algorithm to minimize the saliency distortion
caused by tone mapping.

Table 3: Some differences between 2d and 3d images

Observed feature 2d 3d

Scene condition background and
foreground

centered object surrounded by
nothing but air

of objects > 1 = 1
Foreground
Background

ratio low (in general) very high

Color information RGB/RGBA intensity-only

p Intuitive/straight goal: to make the seam-carved 3d image the most visually similar to
the original one.

⇓

to minimize the “difference”/content distortion caused by carving each 2d seam.

⇓

So if we need to remove some pixels (which form the 2d seam) away, they should probably
be: (1) less-important ones, and (2) not destroying the geometric shape/properties of the image.

Page 16 of 40

(By June 26th...)

1. Code description and instructions

In the updated code, functionalities are integrated into main.cpp:

1. Two seam-generation approaches (computation of M and “backtracking” — ‘frommid’
(the default option; start with the first 1d seam on some middle xz-slice) and ‘volume’.

+ Usage: ‘v’/‘V’ to switch between the two (compute the next optimal seam but
do not carve).

2. Energy functions (switch by pressing ‘1’–‘6’; compute the next optimal seam but do not
carve).

+ Usage:
‘1’ Gradient (L1-norm), the default option;
‘2’ Extended gradient (3x3x3 neighbors, added four “diagonal” terms);
‘3’ Laplacian (3x3x3 neighbors);
‘4’ LoG (5x5x5 neighbors, simply approximated by a spatial mask);
‘5’ Line detector (3x3x3 neighbors);
‘6’ To be completed (could be making use of the histogram of the 3d image).

3. “Bilinear” (interpolation) scaling (for comparison)
+ Usage: ‘7’ to do scaling from WIDTH to WIDTH− 1, so includes the carving action.
+ Usage: ‘c’/‘C’ carves to 75% of the current width, by bilinear scaling.

4. Rendering modes
+ Usage:

‘8’ one xz-slice (without color mapping); use ‘UP’/‘DOWN’ to navigate to different
“layers” (y values);
‘9’ look from y+ and render all xz-slices (with color+α mappings);
‘0’ volume rendering mode (with color+α mappings), the default option.

5. Carve the current yz-seam
+ Usage: ‘Backspace’ to carve.

6. Hide/partially display/fully display the current seam
+ Usage: ‘s’/‘S’ to switch among the three modes (in order).

7. Zoom-in/out
+ Usage: ‘i’/‘I’ and ‘o’/‘O’

8. Reload the original 3d image
+ Usage: ‘r’/‘R’ (the original .raw image is fisrt loaded into ‘I_original’ and

remains in the memory until the end).

9. Snapshot the GLUT frame buffer
+ Usage: ‘w’/‘W’ to take a snapshot and save it to .png file.

10. *Rotate the scene
+ Usage: click+drag the mouse

Page 17 of 40

2. Experiment

With the selections of both
:::::::::::::::
seam-generation

:::::::::::
approaches and

::::::
energy

::::::::
function being discussed,

we still have some other factors that might improve/damage the quality of retargetting:

• do/do not use, in computing the energy E, terms correlated with the y-direction
(suppose using ‘frommid’ mode, carving x-direction and implicitly treating each xz-slice
separately).
• loose/tighten the constraint when generating the 2d seam.
• do/do not introduce randomness when selecting the starting 1d seam (‘frommid’) and
x-position (‘volume’).

Figure 14: Histograms of the original .raw 3d images.

Note on June 26:
(0) Continue completing the experiment (4 groups);

(1) Check out “Transfer Function Design” (and volume rendering);

(2) Wrap up the math of the idea (summarized in the note);

(3) 3d texturing using OpenGL;

Figure 15: Comparison: simple scaling to 75% of width.

Page 18 of 40

“frommid” “volume”

Gradient

Ext. gra.

Laplacian

LoG

Line detector

Figure 16: Group #1: without y-related terms, no randomness (choose exactly the
top 1)

Page 19 of 40

“frommid” “volume”

Gradient

Ext. gra.

Laplacian

LoG

Line detector

Figure 17: Group #2: without y-related terms, use randomness (choose one from the
top 15%)

Page 20 of 40

“frommid” “volume”

Gradient

Ext. gra.

Laplacian

LoG

Line detector

Figure 18: Group #3: with y-related terms, no randomness

Page 21 of 40

“frommid” “volume”

Gradient

Ext. gra.

Laplacian

LoG

Line detector

Figure 19: Group #4: with y-related terms, use randomness

Page 22 of 40

Table 4: Options setting for each group of the experiment

Group
Option

y-related energy term(s) Randomness

1 7 7

2 7 3

3 3 7

4 3 3

Observation (“raw” conclusion):

First, note that 1) every observation here is partially subjective (already knew details of
these four groups) and completely aesthetics-based (not quantitatively). 2) each figure gives the
result of carving 25% of the width concecutively with the corresponding setting, while in the
program it’s okay to change the setting along the way of carving.

1. Overall, randomness does benefit the effect (#2 beats #1 and #4 beats #3), so it’s worth
introducing randomness in the algorithm, at least in a certain degree.

2. The simplest “gradient” (the first energy option) seems, and had been observed, to perform
well. However, when | ∂∂y I| is back to the equation (groups #3 and #4), gradient leads the
algorithm to destroying the teapot’s body. Meanwhile, since it’s unpredictable that
how the object is placed when the 3d image was taken, the algorithm should not
be asked to recognize which one(s) of the x, y and z terms of the gradient is/are to be
neglected. This means any energy function should be, and is best to be, in its original
and complete form (as in groups #3 and #4), with no “prejudice” on any of the three
dimensions. Therefore, from such perspective “gradient” is not an ideal choice.

3. From observing groups #3 and #4, the best two options of the energy function are
“LoG” and “Line detector”, which give comparable quality and are more robust to
the number of seams carved. Any of the two, or some combination of them, can
be considered as the default energy function.
——LoG adds “Gaussian smoothing” to the pure Laplacian filter, and here we
may also pre-filter the image using Gaussian before carving with (such as) the
“Line detector” energy function.
(should do such smoothing every time, so not changing the image data — only
aims at improving the carving. will be tested soon)

• Last but important, appears that “volume” mode performs well, or better than “from-
mid” — if we look at the last four cases in group #4. So there’s still a chance to
propose a seam-generation approach like this (but needed to be improoved), which
may look general and intuitive from the theoratical perspective.

Page 23 of 40

On 3d texture-mapping (July 7):

In OpenGL, textures are used to map color onto geometry. The only difference between
a 2d texture and a 3d texture is the way in which you address the color.

2d texture ⇔ 2d texcoord, 3d texture ⇔ 3d texcoord.

(so you could, for example, specify a 3d texture and then draw a single quad that has some
part of that texture mapped onto it.)

The teximage that you create is just an image that’s stored efficiently in memory,
and interpolated efficiently in memory as well.

• What volume rendering does is it tries to think of the 3d image as some gaseous
volume, so parts can be seen through, other parts are opaque. It’s a physical model that
we map onto the data, by using two pieces:

(1) a transfer function that maps data values to color (RGBA) values, and

(2) a light model that tells us how a ray of light passes through the data values and accu-
mulates color. In OpenGL, the standard way to do (2) is a glBlendFunc.

But, OpenGL still thinks about the world as drawing “geometry”, such as the triangle.
What folks do when they’re making an opengl volume renderer is to use some kind of proxy
geometry. For example, a stack of quads (or polygons; it need not be quads). They then use
the teximage to rapidly index and interpolate an image of RGBA. What people often do is use
a set of polygons that line up with the ray cast from the viewpoint into the volume.

Figure 20: “View-Aligned Slicing”

The number of slices is a variable that affects the quality of the approximation, but if you
compute those slices quickly, it’s nicer than using axis-aligned slices because it gives
the effect of looking into the volume. If you just used such as xy-planes you’d see gaps as
you rotate. While with a 3d texture, you can specify 3d coordinates for the view-aligned slices
and then get a visualization that has no gaps (and interpolates the data between slices for you).

Namely, each viewpoint should correspond to a specific stack of polygons, or “view-aligned
slices” — you might want to cache them a bit or delay recomputation.

In short,
• the easy part is setting up the texture;

• the hard part is setting up the geometry;

• but it should make things look nicer from an arbitrary viewpoint.

Page 24 of 40

Let M be the image domain, namely M ∈ R3, then

f : M 7→ R a 3d point matched to an intensity value, I = f(x, y, z)
tα R 7→ R an intensity value matched to an opacity, α = tα(I)

tα ◦ f : M 7→ R composition of the two : assign each 3d point with an

opacity, α = tα
(
f(x, y, z)

)
, thus f denotes some intensity value; and the domain of f , M , is the “finite subset”{

(x, y, z)
∣∣∣ x, y, z ∈ Z, 0 6 x < WIDTH, 0 6 y < HEIGHT, 0 6 z < DEPTH

}
∈ R3. The outcome

of seam carving is to change the image domain from M to M ′ = M −
{
seam

}
.

• “Fact” behind the scene:
—— carving t ◦ f is better than carving f ONLY IF t is designed right.

Designing a good TF is not always easy. As the volume rendering goes, the user doesn’t
know exactly what t is, and so they want to vary it. Anyway, we cannot assume the TF is
a good one.

• Assumption on a right-designed t:
—— is representative of some measure of visual importance dictated by the user.

This is not unlike the idea in 2d seam carving where the user selects an object to remove/p-
reserve.

• Goal: asking when t changes, if carving t ◦ f can be accomplished (by carving f
+ using the relationship between t and f) without having to apply t to f .

It’s to understand the relationship between
:::::::
carving

::
f and

:::::::
carving

:::::
t ◦ f . NO assumptions

on whether one will be good/bad/successful/failure. So in other words, with such relationship
carving t ◦ f may be performed more efficiently, or, it can help user determint t.

Figure 21: Relationship between SC and “something else we do with volumes”

Page 25 of 40

Aug. 4th

1 Statistical feature of the whole volume

Figure 22: Boxplot and histogram of the whole (original) volume.

2 Statistical feature of each 2d seam (when carving f)
Goal: to observe statistical feature of the seam’s intensity values, so as to

:::
see

::
if
:::::::
seams

:::::::::
generated

:::
by

::::::::
carving

::
f

::::
can

:::
be

:::::::::::
candidates

::::::
when

:::::::
carving

:::::
t ◦ f .

Figure 23: Boxplot: each of the first 50 seams carved from f .

It appears that these concecutive 2d seams have similar statistical distributions.

Page 26 of 40

3 Generate opacity TF based on seams carved from f

Figure 24: Histogram of the first 50 seams (cumulative, computed together).

The above figure gives the histogram of all intensity values of the first 50 seams (simply
combined together, non-weighted). Such distribution (and histogram of each single seam) looks
very alike that of the original volume’s.

Figure 25: TF trial #1 based on histogram of seams carved/original volume.

Figure 26: TF trial #2 based on histogram of seams carved/original volume.

Page 27 of 40

Aug. 6th Statistical feature of seams in 2d

(1) BostonTeapot_slice.png

Figure 27: Boxplot: whole image vs. first 64 seams.

Figure 28: Histogram: whole image vs. first 64 seams.

Page 28 of 40

(2) lobster.png

Figure 29: Boxplot: whole image vs. first 136 seams.

Figure 30: Histogram: whole image vs. first 136 seams.

Page 29 of 40

(3) lena.png

Figure 31: Boxplot: whole image vs. first 128 seams.

Figure 32: Histogram: whole image vs. first 128 seams.

Page 30 of 40

(4) train.png

Figure 33: Boxplot: whole image vs. first 125 seams.

Figure 34: Histogram: whole image vs. first 125 seams.

Page 31 of 40

Aug. 12 —

Topology

Smooth function: a function that has continuous derivatives up to some desired order
over some domain.

retraction

0 What is d-dimensional manifold

For an d-manifold M , ∀p ∈ M , ∃ an open set where all points in the open set are in
d-dimensional ...

0 Contour of scalar functions

Given a continuous/smooth function
f : M → R, a contour at value k is:

f−1(k) = { p ∈M | f(p) = k }

If M is a 2-manifold, f−1(k) should be 1-manifolds.

0 Basic concepts in combinatorial topology

Topology is:
• a branch of geometry;

• the study of properties of figures that endure when figures are subjected to
continuous transformations;

• “Rubbder sheet geometry”.

The disk:

• is in one piece;

• has only one boundary curve.

The annulus:

• is in one piece;

• has two boundary curves;

• divides the (2d) plane into two parts.

• cell: any figure topologically equivalent to a disk.

• First priciple of combinatorial topology: to study complicated figures (“complexes”) that
can be constructed from cells by gluing and pasting them together along their edges.

• Euler’s formula for a cell: F − E + V = 1

Page 32 of 40

Group meeting on Fall 2015
August 19

1. Seam carving project:

• directions: 1) TF generation based on carved seams/image after being carved;
2) topological change (contour tree) if the volume is carved.
• > two more weeks of learning topology/contour tree/reeb graph, then implement CT
in C++ and do the experiment.
• how to seam carve a volume? (what the best approach is, and reasons)
• 2 credit hours.

2. TA on 604:

Five reasons to join lab sessions:

(a) Before you start: take minutes to read lab instructions in the room, and clarify
confusion(s).

(b) Already started: prepare/come up with questions to ask or discuss, making sure
that you are on the right track.

(c) About to finish: test your code again on lab machines, and check anything is
missing/to be improved (e.g., extra credits).

(d) Feedback in detail: check with TA/instructor about grading questions from last
assignment.

(e) Flexibility: non-mandatory; can come/leave at any time you like.

3. Courses taking:

• CPSC 804 and CPSC 678
• optional: MATH 656 (Topology), ECE 847 (Digital Image Processing)

Web folder permission:

• dachaos@imp17:/web/home/dachaos [11] chmod -R 755 public_html/

• drwxr-xr-x 2 dachaos cuuser 4.0K Aug 18 21:06 public_html

Add library directory (with .so file in):

• export LD_LIBRARY_PATH=/home/dachao/Documents/libtourtre-master:$LD_LIBRARY_PATH

Page 33 of 40

Contour tree notes by Sep. 10

I. In general (ground-truths):

• JT, ST and the upcoming CT are all drawn as undirected graphs.

• Nodes should be at the correct height, or in a line from bottom to top.

• “is a leaf” simply means “node.outdegree() == 1”

• Properties:

– Join tree has the correct DOWN degree;
– Split tree has the correct UP degree;

thus, at the end of each iteration we add an edge by looking into
JT if it’s a

::::::
lower

:::::
leaf, or ST if it’s an

:::::::
upper

:::::
leaf.

II. Initial enqueuing (before the while loop):

• Not any kind of priority queue, meaning that the order doesn’t matter. All eligible
candidates can be enqueued in a random order.

• Enqueuing constraint: downdegree_in_JT + updegree_in_ST == 1 , namely (in

the JT/ST) those who are either

1. a global extremum, or
2. a local extremum on one tree but a regular point on the other.

III. Rewritting Algorithm 4.2 in Carr’s paper:

Algorithm to merge JT and ST

1 Leaf queue initialization:
For each node i

If down-degree in JT + up-degree in ST is equal to 1 *,
enqueue i.

2 While leaf queue’s size is larger than 1 do
• Dequeue the first node i (at front of the leaf queue).

• If i is a lower leaf in JT ,
find incident arc i — j in JT ;

Else
find incident arc i — j in ST ;

• Add i — j to C, the contour tree.

• JT ← JT 	 i, ST ← ST 	 i.

• If node j now satisfies enqueuing condition,
enqueue node j.

* we can name it as the enqueuing condition.

Page 34 of 40

http://www.comp.leeds.ac.uk/scshca/papers/CSA03_contourTree.pdf

What is contour tree?

What is join tree?

What is split tree?

Page 35 of 40

Magic: Stealing Pixels Secretly
—— a not-too-short tutorial for Seam Carving

October 7, 2015

Consider an N -by-N (N=4) image:

I =

201 209 213 199

211 220 227 188

194 180 49 52

190 174 150 107

A simple energy function defined on it:

e1(I) =
∣∣∣∣ ∂∂xI

∣∣∣∣+ ∣∣∣∣ ∂∂y I
∣∣∣∣

, where ∂

∂x
I(x, y) = I(x + 1, y) − I(x, y).

OR ∂

∂x
I(x, y) = 1

2 · [I(x + 1, y) − I(x, y) + I(x + 1, y) − I(x, y)] = 1
2 · (I(x + 1, y) − I(x − 1, y)).

E =

12 15 28 25

26 47 217 179

18 135 104 58

20 30 144 98

Well, what would be the best vertical seam?

Reminder, def. of a vertical seam:

sx = {sxj }HEIGHT−1
j=0 = {x(j), j}HEIGHT−1

j=0

s.t. ∀j, |x(j)− x(j − 1)| ≤ 1

1-by-N image:

12 15 28 25

Sort them! Find the minimum. This is a vertical seam of length 1.

12 15 28 25

Page 36 of 40

2-by-N image:

12 15 28 25

26 47 217 179

The vertical seam now should consist of two pixels (HEIGHT = 2, one at each row).

Recall that we want to find an optimal seam that minimizes the seam (energy) cost, i.e.
s∗ = mins E(s1) + E(s2). Let’s first look at the second row —— there are 4 position.

An immediate question: starting from each of these four positions, what would the
optimal seam path?

Just to make us on the same page, a vertical seam that starts from the third position at the
second row looks like:

1st row

2nd row

12 15 28 25

26 47 217 179

12 15 28 25

26 47 217 179

12 15 28 25

26 47 217 179

It’s much easier to answer which option is the best among these three: it’s the left one!
(217−→15) The math we implicitly did here is finidng min{15, 28, 25}. We actually divide to
problem, at the second row, into four sub-problems.

If we think of solving the problem recursively as the problem size (# of rows) increases, i.e.
trying out all possibilities, it will be slow —— there are too many!! (grows exponentially)

Solution: record the “footprint”. Record what decisions we make at each step as we
go one hop down, by cumulating the energy along the best seam so far. It’s store in the
cumulative energy array

M(i, j) = e1(i, j)
+ min (M(i− 1, j − 1),M(i, j − 1),M(i+ 1, j − 1))

fill it out:

12 (12) 15 (15) 28 (28) 25 (25)

38 (26) 59 (47) 232 (217) 204 (179)

44 (18) 173 (135) 163 (104) 262 (58)

64 (20) 74 (30) 307 (144) 261 (98)

Get the position (col number) x∗ = minxM(HEIGHT-1, x) by sorting the last row (find some
way to deal with ties!). x∗ will be where we start to “backtrack” the optimal seam, from the
last row.

And we’re done!

Page 37 of 40

Dynamic Programming

Part of the challenge is that the name itself doesn’t really convey what the technique is
about (like “divide and conquer”, the name tells you what it does). Dynamic programming is
kind of a historical artifact:

• the “programming” part does not mean “computer programming”, it means “mathemat-
ical programming” in the sense of optimization. The word “planning” might be more
appropriate there.

• “dynamic” comes from the fact that this technique was originally used to solve multi-
stage/decision-making processes.

So the name kindof tells you nothing about what the technique is. The technique is basically
solving problems recursively. (compare with: greedy algorithm, exhausted search)

Example: Making Change

• We have N different denominations of coins
(e.g. US coin system, 1 cent, 5 cents, 10 cents, 25 cents)

• Can use as many coins of each denominations as we wish.

• What is the minimum number of coins we need in order to construct exactly C cents
worth of change?

What’s the usual way to do this? Just the largest value first, be greedy. For US coin system
it does work, it does give you a minimum number of coins. If we come up with a strange country
such that for greedy it’s not always optimal:

1 cent, 11 cents, 20 cents

22 cents? Greedy is not optimal.

Page 38 of 40

There are different ways of approaching the algorithm problem from a high level; one of the
main techniques we have for solving a problem is a kind of sequential construction —— you
build the solution one step at a time. Each step of the algorithm you try to pick one
thing to add to your solution. −→ All the algorithm has to do is to figure out what’s the
first coin to put into the solution. And then it’s going to figure out what’s the next one (to put
into the solution).

If I could just figure out how to make that first decision, then after that what am I left
with? — a remaining sub-problem that is the exactly same form of the original. It’s smaller, it
involes a smaller number of C. So I could just recursively solve that. This type of probalms
they have sort of a “recursive structure”, so a very plausible way to solve these problems is to
make that first decision, and just use recursion to finish things off.

• Greedy: initial decision can be made safely and irrevocably; is really great because it
has such a simple rule to make each decision. They are nice for just really really small
simple problems, but in real world, most problems are mean enough that g.a. don’t give
you the optimal solution.

• Exhaustive search: Recursively try all possible first decisions, usually in some sort of
“greedy” order, and usually with some sort of pruning (heuristics) to speed things up.
It’s going to grow exponentially fast (an immense set of solution). This is really slow
though, usually. What’s the key of making this run quickly? Pruning! To start with the
biggest value (greedy) usually gives you a “descent” solution. Search everything,
but keep in your hand the best (or best k) solution(s) and as you do the search
anytime you realize that nothing ahead of me is not gonna improve on the best
solution, just backup and prune the search.

• Dynamic Programming: Solve all possible subproblems from smallest to largest. Sup-
pose “someone” tells you the answer of each of the sub-problem. That is what dynamic
programming is all about!

What it does is
::
it

::::::::
actually

::::::
solves

::::
all

::::
the

:::::::::
problems

:::::
from

::::
the

::::::::
bottom

::::
up: what if I want

to make change for 1 cent? What if 3 cents?... by the time I reach the actual value of C
(that I actually care about), I’ve already solve everything smaller!! That makes the initial
problem really easy because we already know the solutions to the smaller problems that I
would reach via the that first decision.

A lot of people think of it as a “bottom-up” approach, or an approach kindof involves tabular
solutions to all possible problems. It seems like you might be wasting time, because you’re solving
a bunch of problems that you don’t really care about, i.e. you’re solving everything; however,
the benefit of that is when you actually reach the big problem you originally care about, you
can easily solve it —– easily make that first decision, because these “subproblems” are already
solved.

Page 39 of 40

Page 0:

Today this useful tool that I’m going to talk about is an image manipulation approach,
which I refer to as “stealing pixels away”! Let’s see what it’s about.

Page 1:

Image manipulation has been around ever since photography has been around. As we can
imagine it was very difficult to do at the beginning, but today we have computers, with terrific
tools to help us manipulate the images.

Often times, the manipulation we’d like to do is to change the aspect ratio of an
image: on one hand, the display device changes from a cellphone to a computer screen, to
maybe the screen in the theater; on the other hand, for example, if you want to change the
header background of my personal website, you probably have to “sqeeze”-and-“stretch” the
background photo to the same resolution as the header. (so in order to show the stuff better
we need to change them a little bit)

Page 2:

One simple operation is to crop it. Here’s an image of this polar bear. Cropping gives you
the region of interest, but something else has to give (especially when objects are located far
from each other). Well now we may think what about just scale the image? As we can see some
artifacts/distortion that make the image look NOT so real, even if some interpolation is done
to reduce the aliasing. What we want, is a way to change the size of the image while
still preserving the content, that’s why it is referred to as “content-aware” resizing.

Page 3:

This so-called “seam carving” approach defines (what we call) a “seam path”, which is just
a set of pixels that go from top of the image to the buttom — they contain 1 pixel at a row,
and they’re connected.

Page 4:

What’s interesting is if you take such a seam and remove it from the image, what happens
is the image remains “intact” BUT, as I removed one pixel for each row so the width is one
pixel smaller. And as we do it concecutively, the image changes its aspect ratio.

So obviously the big question is which seam do we remove? The right seam to remove
is actually the one that would be the least noticable, such that it would be able to trick
your eyes. Well “least noticable” means it contains the least amount of “information”, or say
“content”. We want to show what’s important in the image, and specifically, the edges.

Page 5:

So the math behind the scene is we define an energy function based on some common
edge-detection operator, such as gradient. And use dynamic programming to find the optimal
seam path that touches as few edges as possible.

Page 40 of 40

