MAT	2105: Linear Algebra I	Schedule:	
S	Recitation Stern College for Women	Week 1	Re lab alg
	Yeshiva University Spring 2024	Week 2 (Jan. 23) <u>slides</u>	Op " <u>I</u> 1
Instructor: Student Assistant:	Dr. Marian Gidea (marian.gidea@yu.edu) Dachao Sun (dsun1@mail.yu.edu) Beren 719	Week 3 (Jan. 30)	Or <u>Ve</u>
Time: <u>Octave-Onl</u> Installing I	<u>ine.net</u>	Week 4 (Feb. 6)	Or " <u>I</u> 1
<u>Instanting Jupyter</u> <u>online-python.com</u> <u>Source Code Beautifier</u> <u>Jupyter Guide to Linear Algebra</u> <u>Python Numerical Methods</u>		Week 5 (Feb. 13)	Or §1 §1
Dobrushkin, <u>Linear Algebra with Python</u> Hicks, <u>Linear Algebra and Python Basics</u> <u>CS 51P: Intro to Computer Science</u> , Pomona House, <u>Chapter 1: Vectors</u>		Week 6 (Feb. 20)	Op §1
House, <u>Cha</u> <u>Math 22: Li</u>	<u>pter 2: Simple Image File Formats</u> inear Algebra, Dartmouth College	Week 7 (Feb. 27)	§2 §2
		Week 8 (March 5)	§2 Re Re
		Week 9 (March 12)	Op an als
		Week 10 (March 19)	Op
		Week 11 (March 26)	Op in Fo M

ecitations each week are mainly for discussing homework assignments and course material; in addition, there are *supplemental* programming bs/activities (roughly biweekly), in which we explore basic linear algebra operations in Python as well as implementing from scratch some of the gorithms.

(no recitation this week)

ptional Reading: <u>Tucker,</u> <u>ntroductory Example</u> " at <u>The History of Linear A</u>	<u>A. (1993)</u> beginning of Lay's ch.1 <u>lgebra (video, 16:40)</u>	Lab 1: Progra §1.1: 11, 13, 15 §1.2: 7, 9, 11, 1		
otional Reading:§1.3: 3, 5, 7, 9, 11, 13, 17, 25 (about span)ctors (video, 9:51)Note: Sorry recording was incomplete, and we plan to go more "sequentially" as planned.				
ptional Reading: Sample matrix class test matrix.cxx snippet§1ndependence, Basis, and Dimension" by MIT OpenCourseWare§1(or Strang's full lecture starting 4'33")sli				
<i>If you have time, please go through Python installed/set up, because next ע</i>				
ptional Reading: Skim th 1.7 (Linear Indep.): 1, 9, 1.8 (Lin. Transf.): 1, 3, 5	rough this <u>tutorial</u> 11, 15, 17, 21, 31, 33 , 13, 15, 17, 24, 31	Lab 2: Preparing a slides/on board		
ptional Reading: Brief summary " <u>Basic Proof Techniques</u> " Lab 3 : 1.9 (Matrix of Lin. Transf.): 1, 3, 5, 7, 9, 15, 17, 19, 37, 39 <u>slides/or</u>				
2.1 (Mat. Operations): 1, 3, 5, 7, 9, 11 §2.3 (Char. Invertible Mat.): 2.2 (Inverse): 1, 3, 5, 7, 13, 19, 31, 33 Practice Material for Midtern				
2.4 (Partitioned): 1, 3, 5, 7, 9, 16, 21 sli ef: <u>Manga Guide to Linear Algebra (Takahashi et al., 2012)</u> ef: <u>Linear Algebra: A Pure Mathematical Approach (Rose, 2002)</u>				
ptional Reading: "Boolean Matrices," (<u>Gersting, J. L., 2003, pp.327</u>) nd <i>Schaum's Outline</i> of Intermediate Algebra (<u>Steege & Bailey, 1997</u>) so check out this Octave manual on <u>matrix manipulation</u>				
ptional Reading: <u>Basis of a Vector Space</u> and <u>Two Additional Vector Space</u> Today was about a remark on LU-factorization, plus going				
ptional Reading: "Not So Permutations" (<u>Bóna, M</u> <u>Section 3.1 of Bóna's</u> and regarding <u>Permu</u>	Vicious Cycles. Cycles <u>1., 2006</u> , Ch. 6, pp. 109) <u>book, Permutations</u> <u>tation as Bijection</u>	Section 5.2 " <u>Per</u> §2.8 (Subspaces §3.1 (Determina		
or exercises #15 & #17 of <u>latrices</u> by Richard Wrigh	f §3.1 - <u>Determinants of</u> nt of Andrews Academy			

mming Environment, Python Basics

5, 17, 19, <u>27</u>, 28 13, 15, 17, 19, <u>20 & 33</u>

slides/on board, recording (no sound)

only talked over a few selected problems (upon asked); next time may

1.4 (Matrix Eq. $A\mathbf{x} = \mathbf{b}$): 7, 9, 11, 13, 15, 21 1.5 (Sol. Sets): 1, 3, 5, 7, 9, 11, 19, 21

ides/on board, pre-recorded-§1.4, recording-both §1.4-1.5

h '<u>Lab 1</u>' (or other resources) and have we'll talk about/do Lab 2 (thanks~).

a Matrix Class

, <u>recording</u>

Preparing a Vector Class

on board, recording (my notes for §1.7 Lin. Indep.)

1, 3, 5, 7, 9, 33

<u>m</u> | <u>slides/on board</u>, <u>recording</u>

lides/on board: <u>Part A</u>, <u>Part B</u>, <u>Part C</u> recording

slides recording

two example data (matrices) for this computer problem: <u>a 20-by-30 matrix</u>, and <u>a 5-by-10 matrix</u>

Spaces by Kevin Cheung of Carleton University (Canada) g over Quiz 5 again: <u>slides</u> and <u>recording</u> <u>scratchwork 2-(ii)</u>

rmutations and Cofactors" of Strang (2009)

s of \mathbb{R}^n): 1, 3, 9, 12, 14, 23, 25

ants): 3, 5, 7, 9, 11, 15, 17, 19, 20, 22, 38, 41

slides (revised), recording

