Friday Lunch with the Mathematics Student Association

Properties of the Gamma Function

There are two cases in which the meaning of a [definite integral is not](https://course.math.colostate.edu/calc2-review/lessons/Math.Calc.ImpropInt.01.html#:~:text=If%20either%20limit%20of%20integration,Definite%20integrals)

[immediately clear:](https://course.math.colostate.edu/calc2-review/lessons/Math.Calc.ImpropInt.01.html#:~:text=If%20either%20limit%20of%20integration,Definite%20integrals)

- limit of integration is infinite
- domain over which the integral is evaluated contains points where the **function's value** becomes infinite at a vertical asymptote

These situations are improper integrals, and they are evaluated using **limits**.

The Gamma function is defined for all $x > 0$ as

$$
\Gamma(x) ~=~ \int_0^{\infty} t^{x-1}e^{-t}{\,}\,dt
$$

 (1)

Part (a). Convergence

Want to show that Equation 1 makes sense, namely showing that this improper integral converges.

A hint here is to first prove that

$$
\lim_{t\to\infty}t^pe^{-\frac{1}{2}t} ~=~ 0
$$

for all real numbers p, and then use this to show that there exists a number $M > 0$, which depends on p, such that $0 \leq t^p e^{-\frac{1}{2}t} \leq M$ whenever $t \geq 1$, and then conclude that

$$
\int_1^\infty t^{x-1} e^{-t}\ dt
$$

exists for all $x > 0$.

Proof Step #1: Showing that Limit of $t^p e^{-\frac{1}{2}t}$ as $t \to \infty$ Goes to Zero. If $p < 0$, then $\lim_{t \to \infty} t^p e^{-\frac{1}{2}t} = 0 \cdot 0 = 0$; If $p = 0$, then $\lim_{t \to \infty} t^p e^{-\frac{1}{2}t} = \lim_{t \to \infty} t^0 \cdot e^{-\frac{1}{2}t} = 0;$ If $p > 0$, then

$$
\lim_{t\to\infty}t^pe^{-\frac{1}{2}t} = \lim_{t\to\infty}\frac{t^p}{e^{\frac{1}{2}t}}
$$

by applying l'Hopital's Rules $[p]$ times, the limit of the numerator becomes

$$
\lim_{t\to\infty}p(p-1)\cdot\cdots t^{p-\lceil p\rceil}=0
$$

so the entire limit goes to 0, too.

Step #2: Showing $t^p e^{-\frac{1}{2}t}$ Is Upper-Bounded

To begin, $\lim_{t\to\infty} t^p e^{-\frac{1}{2}t} = 0$ implies that when t gets large enough, $t^p e^{-\frac{1}{2}t}$ gets very small. Then, given any $\epsilon > 0$, $\exists x_0 > 0$ such that for $t > x_0$, we have

 $t^p e^{-\frac{1}{2}t} < \epsilon$

is bounded by ϵ ; for the **closed interval** $1 \leq t \leq x_0$, the continuous function $t^p e^{-\frac{1}{2}t}$ is bounded, and let's say it is bounded by M_1 .

Overall, when $t \ge 1 > 0$, take $M = \max\{M_1, \epsilon\}$ be the bound, i.e.

$$
0 \leqslant t^p e^{-\frac{1}{2}t} \leqslant M
$$

Step #3: Showing Two "Portions" of $\Gamma(x)$ Are Both Upper-Bounded

Continuing on, the corresponding $(1,\infty)$ "portion" of the Gamma function integral can be written and shown bounded:

$$
\int_{1}^{\infty} \frac{t^{x-1} e^{-\frac{1}{2}t}}{e^{-\frac{1}{2}t}} \, dt \leqslant \int_{0}^{\infty} M \cdot e^{-\frac{1}{2}t} \, dt
$$
\n
$$
= \lim_{r \to \infty} M(-2) \cdot e^{-\frac{1}{2}t} \Big|_{1}^{r}
$$
\n
$$
= -2M \lim_{r \to \infty} (e^{-\frac{1}{2}r} - e^{-1/2})
$$
\n
$$
= -2M(0 - e^{-1/2})
$$
\n
$$
= 2e^{-1/2}M;
$$

In parallel, the remaining $(0,1]$ portion is **convergent**,

$$
\int_0^1 t^{x-1} e^{-t} \ dt \ \leqslant \ \int_0^1 t^{x-1} \cdot (1) \ dt
$$

which is convergent for $x - 1 > -1$ (since we're given $x > 0$), so it's upper-bounded by the value it converges to.

Overall, because both portions of $\Gamma(x)$ are upper-bounded, $\Gamma(x)$ is upper-bounded and conver-П gent.

Part (b). Show that $\Gamma(x+1) = x\Gamma(x)$ for all $x > 0$

$$
\Gamma(x+1) = \int_0^\infty t^{(x+1)-1} e^{-t} dt
$$

\n
$$
= \int_0^\infty t^x e^{-t} dt
$$

\nintegration by parts
\n
$$
= \int_0^\infty t^x (-1) d(e^{-t})
$$

\n
$$
= -\left(t^x e^{-t}\Big|_0^\infty - \int_0^\infty e^{-t} dt^x\right)
$$

\n
$$
= \int_0^\infty e^{-t} x t^{x-1} dt - \lim_{r \to \infty} r^x e^{-r} \Big|_0^r
$$

\n
$$
= x \int_0^\infty e^{-t} t^{x-1} dt - \lim_{r \to \infty} (r^x e^{-r} - 0)
$$

\n
$$
P \text{Hopital's rules\n
$$
= x \Gamma(x) - \lim_{r \to \infty} \frac{r^x}{e^r}
$$

\n
$$
= x \Gamma(x) - 0
$$

\n
$$
= x \Gamma(x).
$$
$$

Part (c). Show that $\Gamma(n+1) = n!$ for each natural number *n*

To begin,

and by result of part (b),

$$
\Gamma(1) = \int_0^\infty t^{1-1} e^{-t} dt
$$

= $\int_0^\infty e^{-t} dt$
= $-\lim_{r \to \infty} e^{-t} \Big|_0^r$
= $-\lim_{r \to \infty} (e^{-r} - 1)$
= $-(0 - 1) = 1;$

$$
\Gamma(2) ~=~ 1\cdot\Gamma(1) = 1\cdot 1 = 1
$$

and the induction completes for $n = k$ (hypothesis) and $n = k + 1$

so as a base case for $n = 1$, $\Gamma(1 + 1) = 1! = 1$ holds.

Part (d). Show that $\int_0^\infty e^{-u^2} du = \frac{1}{2} \sqrt{\pi}$ using double integrals in polar coordinates

Because e^{-u^2} is an even function, we write

$$
\int_{0}^{\infty} e^{-u^{2}} du = \frac{1}{2} \int_{-\infty}^{\infty} e^{-u^{2}} du
$$

\n
$$
= \frac{1}{2} \sqrt{\left(\int_{-\infty}^{\infty} e^{-u^{2}} du\right)^{2}} \quad \dots \dots \text{ integral is positive}
$$

\n
$$
= \frac{1}{2} \sqrt{\int_{-\infty}^{\infty} e^{-x^{2}} dx \int_{-\infty}^{\infty} e^{-y^{2}} dx}
$$

\n
$$
= \frac{1}{2} \sqrt{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2} - y^{2}} dx dy}
$$

\n
$$
= \frac{1}{2} \sqrt{\int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^{2}} r dr d\theta} \quad \dots \dots \text{ using polar coordinates}
$$

\n
$$
= \frac{1}{2} \sqrt{\int_{0}^{2\pi} d\theta \cdot \int_{0}^{\infty} e^{-r^{2}} r dr}
$$

\n
$$
= \frac{1}{2} \sqrt{2\pi \cdot (\frac{1}{2})}
$$

\n
$$
= \frac{1}{2} \sqrt{\pi}
$$

Part (e). Calculate $\Gamma(1/2)$ and $\Gamma(3/2)$

$$
\Gamma(\frac{1}{2}) = \int_0^\infty t^{1/2 - 1} e^{-t} dt
$$

let $t = u^2$, then $dt = 2u du$

$$
= \int_0^\infty (u^2)^{-1/2} e^{-u^2} \cdot 2u du
$$

$$
= 2 \int_0^\infty e^{-u^2} du
$$

$$
= 2 \cdot \frac{1}{2} \sqrt{\pi}
$$

$$
= \sqrt{\pi};
$$

 $\rm So$ then

$$
\Gamma(\frac{3}{2})\,\,=\,\,\frac{1}{2}\,\,\Gamma(\frac{1}{2})\,\,=\,\,\frac{1}{2}\,\,\sqrt{\pi}.
$$