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CHAPTER 2

Metric Spaces

1 INTRODUCTION

A metric space is a set of points and a prescribed quantitative
measure of the degree of closeness of pairs of points in this space.
The real number system and the coordinate plane of analytic
geometry are familiar examples of metric spaces. Starting from
the vague characterization of a continuous function as one that
transforms nearby points into points that are themselves nearby,
we can, in a metric space, formulate a precise definition of con-
tinuity. Although this definition may be stated in the so-called
‘“‘g, 8"’ terminology, there are other, equivalent formulations avail-
able in a metric space. These include characterizations of con-
tinuity in terms of the behavior of a function with respect to
certain subsets called neighborhoods of a point, or with respect
to certain subsets called open sets.
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Ch. 2 Metric Spaces

2 METRIC SPACES

Given two real numbers a and b, there is determined a non-
negative real number, |a — b|, called the distance between a
and b. Since to each ordered pair (a, b) of real numbers there is
associated the real number |a — b|, we may write this corre-
spondence in functional notation by setting

d(a,b) = |la — b|.
Thus we have a function d:R X R — R, where R is the set of real

numbers. This function has four important properties, which the
reader should verify:

1. d(z,y) 2 0;

2. d(z,y) = 0if and only if z = y;

3. d(z,y) = d(y, 2);

4. d(z,2) = d(x, y) + d(y, 2);

for z,y, 2 € R. For the purposes of discussing ‘“‘continuity’’ of
functions, these four properties of ‘“‘distance’ are sufficient. This
fact suggests the possibility of examining ‘‘continuity’’ in a more
general setting; namely, in terms of any set of points for which

there is defined a ‘“‘distance function” such as the function
d:R X R — R above.

DerFINITION 2.1 A pair of objects (X, d) consisting of a non-empty
set X and a function d: X X X — R, where R is the
set of real numbers, is called a metric space provided
that:

L d@,y) 20, z,y€EX;

2. d(x,y) =0ifandonlyifz =y, =z, y € X,

3. dx,y) =dy,2), z,yEX;

4. d(z,2) S d(x,y) +d(y,2), =z, y2€EX.

The function d is called a distance function or metric
on X and the set X is called the underlying set.
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Metric Spaces Sec. 2

[A more precise notation for a metric space would be
(X,d:X X X — R) and for a distance function d:X X X — R.
We shall, however, frequently delete the sets and arrow in the
symbol for a function, when, in a given context, it is clear which
sets are involved.]

We may think of the distance function d as providing a quan-
titative measure of the degree of closeness of two points. In par-
ticular, the inequality d(z, 2) =< d(z, y) + d(y, z2) may be thought
of as asserting the transitivity of closeness; that is, if z is close
to y and y is close to z, then z is close to z.

Let a, b € R, where R is the set of real numbers. The veri-
fication that the function d(a,b) = |a — b| satisfies the four
properties enumerated in Definition 2.1 establishes:

TueoreM 2.2 (R, d) is a metric space, where d is the function defined
by the correspondence d(a, b) = |a — b|, for a, b € R.

Given a finite collection (X, d)), (X, do), ..., (X, d,) of

metric spaces, there is a standard procedure for converting the
set

into a metric space; that is, for defining a distance function on X.

THEOREM 2.3 Let metric spaces (X, di), (X2, ds), ..., (X, d,) be
given and set
n
X=1 X;
tm=]
For each pair of points z = (21, 23, ..., 2s), ¥ =

W, Y2y - - ., Yn) € X, let d: X X X — R be the function
defined by the correspondence

d(z, y) = maximum {d:(z;, ¥:)}.
18isn
Then (X, d) is a metric space.
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Ch. 2 Metric Spaces

Proof. With z and y as above, d.(z;, y:) = 0 for
1 =7 = n, and therefore d(z,y) = 0. If d(z,y) = 0,
then di(z;, y;) = 0 for 1 £ ¢ < n and therefore z; = y;
for each <. Consequently, z. = y. Conversely, if z = y,
then di(zi, y;) = 0 for each ¢, and d(z, y) = 0. Since
di(xi, y:) = di(ys, x:) for 1 < 7 < n, d(z, y) = d(y, z).
Finally, let z = (21,2, ...,2,) € X. Let j and k be
integers such that d(z, y) = d;(z;, ¥,) and d(y, 2z) =
(Y, z). Thus, for 1 <4 =<, diz;, y:) < di(z;, y5),
di(ys, 2:) S delyx, 2:), and
di(xs, 2i) = di(xs, ys) + di(Ys, 22) < di(), y3) + dulys, 2)

= d(x; .1/) + d(y, z)-

Therefore d(z, z) = m?)ii;rsxum {di(zi, 2:)} = d(z, y) +
d(y, 2).

As an immediate application of this theorem, we have:

CoroLLARY 2.4 (R*, d) is a metric space, where d: B* X R* — R is the
function defined by the correspondence

d((xh 2 TR 13,.), (yh Y2y o - o,y yn))
= maximum {|z; — yi|}, (T, 22, . . ., Zn),

15:sn
(yl’ Y2y o o 0y yn) & R~

It is interesting to compare the metric space (R?, d) that we
obtain in the above manner with what might be considered a more
natural model of the coordinate plane. In (R?, d) as defined above,
the distance from the point (1, 2) to the point (3, 1) is 2, since
maximum {|1 — 3|, |2 — 1|} = 2. The distance function d’ used
in analytical geometry would yield

d((1,2),3,1)) = VI =3+ 2 - 1)* = V5,
If, for each pair of points (xi, z2), (1, ¥2) € R? we define

d'((x1, 22), (Y1, ¥2)) = V(i — y)? + (22 — y2)%,

then we are constructing a new metric space (R?, d’), (provided,
of course, that d’ is a distance function), which must be distin-
guished from the metric space (R?, d) where
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Metric Spaces Sec. 2

d((z1, x2), (Y1, ¥2)) = maximum {|z; — i, |22 — 1|}.

For example, in (R?, d) the set M of points z such that d(z, a) < 1
for a fixed point @ € R?is a square of width 2 whose center is at a
and whose sides are parallel to the coordinate axes, whereas in
(R?, d’) the set of points x such that d’(z, a) < 1 for a fixed point
a € R?is a circular disc whose center is a and whose radius is 1
(see Figure 4).

o

d(z,a)<1 d'(z,a)<1

Frigure 4

The formula used to define the function d’ may be generalized
to yield a distance function for R*, often referred to as the
Euclidean distance function.

TuroreM 2.5 (RBn, d') is a metric space, where d’ is the function defined
by the correspondence

20 = [ @

forz =@, 25 ...,%), 9= Wy, Y,...,Y:) €R™
The proof of this theorem will be found in Section 8.
The fact that we have metric spaces (R*, d) and (R*, d'),
with d and d’ defined as above, serves to emphasize the fact that
a metric space consists of two objects, a set and a distance func-

tion. Two metric spaces may be distinct even though the under-
lying sets of points of the two spaces are the same.
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Ch. 2 Metric Spaces

EXERCISES

1. Let (X, d) be a metric space. Let k be a positive real number and
set di(z, y) = k-d(zx, y). Prove that (X, di) is a metric space.

2. Prove that (R*, d”’) is a metric space, where the function d’’ is de-
fined by the correspondence

n
d’(z,y) = Z lz: = wil,
1=

forz= @, 23...,2), ¥y = U Y2 - . ., Yn) € B~ In (R2 d"') de-
termine the shape and position of the set of points x such that
d’(x, a) = 1 for a point ¢ € R2
3. Let d be the distance function defined on R" by using Theorem 2.3,

let d’ be the Euclidean distance function, and let d”’ be the distance
function defined in Problem 2 above. Prove that for each pair of
points z, y € R»,

d(z,y) = d'(z,9) < Vndz,y),

d(z, y) £ d’(z,y) < n-d(z, y).

4. Let X be the set of all continuous functions f:[a, b] — R. For
f, 9 € X, define

a9 = ["17® — g at.

Using appropriate theorems from Calculus, prove that (X, d) is a
metric space.

5. Let S C R. A function f:S — R is called bounded if there is a
real number K such that |f(z)] < K, € S (or equivalently,
f(8) C[—K, K]). Let X’ be the set of all bounded functions
f:[a,b] = R. For f, g € X’ define

d'(f, 9) = Lub. U.epp {1f(2) — 9@},

(L.u.b. is an abbreviation of least upper bound, see Definition 5.5 of
this chapter). Prove that (X’, d’) is a metric space.

6. Let f, g:[a, b] — R be two functions that are both continuous and
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Continuity Sec. 3

bounded. Compare d(f, g) and d'(f, g), where d and d’ are defined
as in Problems 4 and 5 respectively.

7. Let X be a set. For z, y € X define the function d by

d(x,z) = 0,
d(x: y) =1,

and

if z # y. Prove that (X, d) is a metric space.

8. Let Z be the set of integers. Let p be a positive prime integer. Given
distinct integers m, n there is a unique integer ¢ = t(m, n) such that
m — n = pt-k, where k is an integer not divisible by p. Define a
function d:Z X Z — R by the correspondence d(m,m) = 0 and

1
d(m, n) = 5‘;

for m # n. Prove that (Z, d) is a metric space. [Hint: for a,
b, ¢ € Z, t(a, ¢) = minimum {t(a, b), t(b, ¢)}]. Let p = 3. What is
the set of elements x € Z such that d(0, ) < 1? What is the set of
elements z € Z such that d(0, z) < 1?

3 CONTINUITY

In calculus, the first occurrence of the word ‘““‘continuity’ is with
reference to a function f:R — R, R the set of real numbers. To
decide which condition or conditions this function must satisfy
for us to say, ‘“the function f is continuous at a point a € R,”
we try to decide upon a precise formulation of the statement
“a number f(x) will be close to the number f(a) whenever the .
number z is close to a.”” Having defined a distance function for,
the real numbers R, we have a quantitative measure of the degree®
of closeness of two numbers. But how close must f(z) be to f(a)?
Instead of specifying some particular degree of closeness of f(x)
to f(a), let us think, rather, of requiring that no matter what

35



Ch. 2 Metric Spaces

choice is made for the degree of closeness of f(x) to f(a), it can be
so arranged that this degree of closeness is achieved. By the phrase
“arrange matters” we mean that we can find a corresponding
degree of closeness so that whenever x is within this corresponding
degree of closeness to a, then f(x) is within the prescribed degree
of closeness to f(a). We have now arrived at the following formu-
lation, ‘“‘the function f: R — R is continuous at the number a € R,
if given a prescribed degree of closeness, f(x) will be within this
prescribed degree of closeness to f(a), whenever z is within some
corresponding degree of closeness to a.”” To put this statement
in its final form, we shall substitute for ‘“‘a prescribed degree of
closeness’” the symbol ‘“‘g,”’ and for the phrase ‘‘some correspond-
ing degree of closeness” the symbol “4,” and use the distance
function to measure the degree of closeness.

DEerFINITION 3.1 Let f:R — R. The function f is said to be continuous
at the point @ € R, if given ¢ > 0, there is a § > 0,
such that

[f(@) — fl@)] <&

|t — a] < 8.

The function f is said to be continuous if it is continu-
ous at each point of R.

whenever

Because we initially formulated the definition of continuity
in terms of the phrase ‘“‘degree of closeness,” we may easily devise
a definition of “continuity’’ applicable to metric spaces in general,
since we need only use the distance functions of these metric
spaces to measure ‘‘degree of closeness.”

DeriniTioN 3.2 Let (X, d) and (Y, d’) be metric spaces, and let a € X.
A function f:X — Y is said to be continuous at the
pointa € X if given ¢ > 0, thereisa § > 0, such that

d'(f(x), fla)) < e
whenever z € X and
d(z, a) <.
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Continuity Sec. 3

The function f: X — Y is said to be continuous if it is
continuous at each point of X.

Definitions, such as those given above, are created to serve
two purposes. First of all, they are abbreviations. Thus, the state-
ment that begins, “given € > 0, there is . . . ,” is replaced by
the shorter statement, “f:X — Y is continuous at the point
a € X.” Second, these definitions are attempts to formulate pre-
cise characterizations of what we feel are significant properties;
in this case, the property of being continuous at a point. We have
tried to indicate in the discussion preceding these definitions that
they do provide a precise characterization of our intuitive, and
perhaps vague, concept of continuity. There are, in a certain
sense, tests that we may apply to see whether or not they do so.
As an illustration, there are certain functions that we ‘“‘know’’
are ‘“‘continuous,” that is, we are sure that they possess this
property we are trying to characterize. If it should turn out that
a function we ‘“know” to be ‘“continuous’ is not continuous in
accordance with these definitions, then, although these definitions
may be precise, they would not furnish a precise characterization
of the property we have in mind when we say a function is ‘“con-
tinuous.” This type of testing of a definition thus takes the form
of proving theorems to the effect that certain functions are
continuous. For example:

THEOREM 3.3 Let (X, d) and (Y, d’) be metric spaces. Let f: X — Y
be a constant function, then f is continuous.

Proof. Let a point a € X and ¢ > 0 be given.
Choose any 6 > 0, say 6 = 1. Then wheneverd(z, a) < §,
we have d'(f(z), f(a)) = 0 < =

TrEoREM 3.4 Let (X, d) be a metric space. Then the identity function
2:X — X is continuous.

Proof. Supposea € X. Let ¢ > 0be given. Choose
8 = ¢, then whenever d(z, a) < 8 we have d(i(x), 7(a)) =
d(z, a) < e
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Ch. 2 Metric Spaces

Note that in the above proof we could have equally well
chosen § to be any positive number, provided only that § < ¢,
and the proof would still be valid. The choice of § need not be a
very efficient choice; all that is required is that it “do the job.”

There is one situation we shall have to consider for which
the notation f: X — Y that we have adopted for a function from
a metric space (X, d) into a metric space (Y, d") is ambiguous.
Consider metric spaces (X, d) and (X, d’) with the same under-
lying set. If we simply write f: X — X for a function, it is impos-
sible to tell which metric space is denoted by the first occurrence
of X and which by the second. For this reason, when considering
one set X with two different distance functions, we shall write
f:(X,d) — (X, d) if we intend to think of f: X — X as a function
from the metric space (X, d) into the metric space (X, d’). As an
illustration, we shall prove:

THEOREM 3.5 Let i:R* — R" be the identity function. Then

i:(R", d) — (B~ d')
and

©: (R, d') — (B~ d)
are continuous, where the distance function d is the
maximum distance between corresponding coordinates
(as defined in Section 2) and d’ is the Euclidean distance.

Proof. Let a = (ay, s, ..., 0a,) € R*. We shall
first prove that 7:(R» d) — (R" d’') is continuous. Let
¢ >0 be given. Choose & = ¢/ Vn. Suppose z =
(x1, 22, . . ., x») is such that d(z,a) < §; that is,
mia,ximum {lai — x|} < 6. Then
<iEn

d'(z,0) = ,/‘"1 (@ —2)? < Vst = Vel = e

Therefore, given ¢ > 0, there is a & > 0 such that
d'(i(z), i(a)) < ¢ whenever d(z, a) < .

We now prove that ¢: (R, d') — (R", d) is continu-
ous. Let ¢ > 0 be given. Choose & = ¢ Suppose that
z = (21,2 ..., is such that d’(z, @) < 8. Then

n
2 (a0 —x)2 <&
=1
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Continuity Sec. 3

and therefore for each ¢, (a; — 2:)? < 8, or |a; — z,| <
8 = e. Consequently, d(x, a) < e. Thus, given ¢ > 0,
there is a § > 0, such that d(i(z), i(a)) < ¢ whenever
d'(z,a) <.

One of the most important elementary theorems about con-
tinuous functions is the statement that the composition of two
continuous functions is again a continuous function.

Tueorem 3.6 Let (X,d), (Y,d), (Z,d’) be metric spaces. Let
f:X — Y be continuous at the point ¢ € X and let
g:Y — Z be continuous at the point f(a) € Y. Then
gf: X — Z is continuous at the point ¢ € X.
Proof. Let ¢ > 0 be given. We must find a § > 0
such that whenever + € X and d(z,a) < 4, then
d’(g(f(x)), 9(f(a))) < e Since g is continuous at f(a),
there is an 5 > 0, such that whenever y € Y and

d'(y, f(a)) <=, then d"”(g9(y), 9(f(a))) < e. Using the
fact that f is continuous at a, we know that given 5 > 0,
there is a § > 0, such that z € X and d(z, a) < & imply

that d’(f(z), f(a)) < nandhenced”(9(f(z)), 9(f(a))) < e.

CoroLLarY 3.7 Let (X,d), (Y,d), (Z,d”) be metric spaces. Let
f:X — Yandg:Y — Z be continuous. Then gf: X — Z
is continuous.

EXERCISES

1. Let X be the set of continuous functions f:[a, b] — R. Let d* be
the distance function on X defined by

a*(f, ) = [*150) — g0}l dt,
for f, g € X. For each f € X, set

10 = [ 1o a.

Prove that the function I: (X, d*) — (R, d) is continuous.
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Ch. 2 Metric Spaces

2. Let (X; dy), (Y, d),7=1,...,nbemetric spaces. Let f;i: X, — Y,
i =1, ..., n be continuous functions. Let

X=1TX; and Y= 17,

i=1 i=1

and convert X and Y into metric spaces in the standard manner.
Define the function F: X — Y by

F(xl; Xgy - - - ’xn) = (fl(l'l), f2(x2)’ LR r.fn(xn))~
Prove that F is continuous.

3. Define the function f: R? — R by f(x1, x2) = 21 + x.. Prove that f is
continuous, where the distance function on R? is either d or d'.

4. Define functions g, A, k, m as follows: g: R? — R? X R2by g(z, y) =
((z,y), (x,¥)); h:R* X R2— R X R by h((a, b), (c,d)) = (a + b,
¢c—d);k:RXR—RXRbyk(u,v) = (u?v?);m:R X R— Rby
m(z,y) = 3(x — y). Prove that all these functions are continuous
and that xy = mkhg(z, y).

4 OPEN BALLS AND NEIGHBORHOODS

In the definition of continuity of a function f at a point a in a
metric space (X, d), we are concerned with how f transforms
those points * € X such that d(z, a) < 8. If we give a name to
this particular collection of points in X we shall be able to cast
the definition of continuity in a more compact form.

DEFINITION 4.1 Let (X, d) be a metric space. Let a € X and § > 0
be given. The subset of X consisting of those points
z € X such that d(a, ) < § is called the open ball
about a of radius & and is denoted by

B(a; 8).
Thus, x € B(a; ) if and only if x € X and d(z, a) < 8. Sim-
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ilarly, if (Y, d’) is another metric space and f:X — Y, we have
y € B(f(a); ¢) if and only if y €Y and d'(y, f(a)) < e. Thus:

TaeoreM 4.2 A function f:(X, d) — (Y, d’) is continuous at a point
a € X if and only if given ¢ > 0 there is a § > 0 such
that

J(B(a; 8)) C B(f(a); ¢).

For a function f:X — Y we have f(U) C V if and only if
U C f(V), where U and V are subsets of X and Y respectively.
Therefore:

THEOREM 4.3 A function f:(X, d) — (Y, d') is continuous at a point
a € X if and only if given ¢ > 0 there is a § > 0 such
that

B(a; 0) C /1 (B(f(a); ¢).

Given a point a in a metric space (X, d), the subset B(a; d)
of X, for each & > 0, is an example of the type of subset of X
that is called a neighborhood of a.

DerFINITION 4.4 Let (X, d) be a metric space and a & X. A subset N
of X is called a neighborhood of a if there is a § > 0
such that

B(a;8) CN.

The collection 91, of all neighborhoods of a point
a € X is called a complete system of neighborhoods of
the point a.

A neighborhood of a point @ € X may be thought of as con-
taining all the points of X that are sufficiently close to a or as
“enclosing’”’ a by virtue of the fact that it contains some open
ball about a. In particular, for each 6 > 0, B(a; ) is a neighbor-
hood of a. These open balls have the property that they are
neighborhoods of each of their points.
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Ch. 2 Metric Spaces

Lemma 4.5 Let (X, d) be a metric space and a € X. For each § > 0,
the open ball B(a; 8) is a neighborhood of each of its points.

Proof. Letb € B(a;é). In order to show that B(a; 8)
is a neighborhood of b we must show that thereisany > 0
such that B(b; 5) C B(a; d). Sinceb &€ B(a; 8), d(a, b) < 6.
Choose n < 6 — d(a, b). If x € B(b; 3) then

d(a, z) = d(a, b) + d(b, z) < d(a, b) + n < d(a, b)
‘ + 86 — d(a,b) =5,

and therefore z € B(a;8). Thus B(b;y) C B(a;8) and
B(a; 8) is a neighborhood of b.

We may describe this proof pictorially. We have started with
an open ball B(a;d) about a. We choose a point b € B(a; d).
Then the minimum distance from b to points not in B(a; d) is at
least 6 — d(a, b), as indicated in Figure 5, so that a ball about b

&

Figure 5

of radius n < & — d(a, b) is contained in B(a; ).
The complete system of neighborhoods of a point may be
used to characterize continuity of a function at a point.

TueoreM 4.6 Let f:(X, d) — (Y, d'). f is continuous at a point a € X
if and only if for each neighborhood M of f(a) there is a
corresponding neighborhood N of a, such that
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fIN) C M,
N Cf(M).

Proof. First suppose that f is continuous at the
point @ € X. We must show that, given a neighborhood
M of f(a), we can find a neighborhood N of a such that
f(N) C M. Since M is a neighborhood of f(a), there is
an ¢ > 0 such that B(f(a); ¢) C M. Since f is continuous
at a, there is a 6 > 0 such that f(B(a; d)) C B(f(a); ¢)-
But N = B(a; §) is a neighborhood of a, therefore

J(N) = f(B(a;9)) C B(f(a);e) C M.

Conversely, suppose that f satisfies the property
that for each neighborhood M of f(a), there is a corre-
sponding neighborhood N of a, such that f(N) C M.
Let ¢ > 0 be given. To prove that f is continuous at a
we must show that there is a § > 0 such that

f(B(a; 9)) C B(f(a); ¢).
But B(f(a); ) = M is a neighborhood of f(a) and there-
fore there is a neighborhood N of a such that f(N) C M.
Since N is a neighborhood of a, there is a § > 0 such
that B(a; 8) C N. Therefore

f(B(a; 8)) Cf(N) C M = B(f(a); ¢).

or equivalently,

The proof of the first part of the above theorem may be
represented pictorially by considering an arbitrary neighbor-
hood M of f(a) (as indicated in Figure 6). Since M is a neigh-

Figure 6
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borhood of f(a), it contains an open ball B(f(a); ) for some & > 0.
Since f is continuous at a, for some & > 0 the neighborhood
N = B(a; ) is carried into M by f. Similarly, the proof of the
second part of the theorem may be depicted by Figure 7. We
start with a neighborhood M = B(f(a); €) of f(a). The assumed

property of f allows us to assert that there is a neighborhood N
of a that is carried into M by f. Since N is a neighborhood of a
we have an open ball B(a; 8) contained in N, which must also be
carried into M.

If N is a neighborhood of a point a in a metric space (X, d)
and N’ is a subset of X that contains N, then N’ contains the
same open ball about a that N does and therefore N’ is also a
neighborhood of a. Thus, the previous theorem becomes:

TrEOREM 4.7 Let f:(X,d) — (Y, d'). f is continuous at a point a € X
if and only if for each neighborhood M of f(a), f~(M)
is a neighborhood of a.

The collections of neighborhoods of points in a metric space
possess five properties that will be of significance in the next
chapter.

THEOREM 4.8 Let (X, d) be a metric space.
N1. For each point a € X, there exists at least
one neighborhood of a.
N2. For each point a € X and each neighborhood
N ofa,a €EN.
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N3. For each point a € X, if N is a neighborhood
of @ and N’ D N, then N’ is a neighborhood of a.

N4. For each point a € X and each pair N, M of
neighborhoods of a, N N M is also a neighborhood of a.

N5. For each point ¢ € X and each neighborhood
N of a, there exists a neighborhood O of a such that
O C N and O is a neighborhood of each of its points.

Proof. Fora € X, X is a neighborhood of a, thus
N1 is true. N2 is trivial and N3 has already been dis-
cussed. To prove N4, let N and M be neighborhoods of
a. Then N and M contain open balls B(a; &) and B(a; &)
respectively and therefore N M M contains the open
ball B(a; 8), where § = minimum {8, 8}. To prove N5,
let N be a neighborhood of a. Then N contains an open
ball B(a; 5) and by Lemma 4.5, O = B(a; é) is a neigh-
borhood of each of its points.

For a given point a in a metric space X, the collection of
open balls with center a has been used to generate the complete
system of neighborhoods at a, in the sense that the neighborhoods
of a are precisely those subsets of X which contain one of these
open balls. ‘

DEerFINITION 4.9 Let a be a point in a metric space X. A collection ®,
of neighborhoods of a is called a basts for the neighbor-
hood system at a if every neighborhood N of a con-
tains some element B of ®,.

As an example, if a is a point on the real line R, a basis for
the neighborhood system at a is the collection of open intervals
containing a.

EXERCISES

1. Let (X, d) be a metric space such that d(x, y) = 1 whenever z 5 ¥.
Let @ € X. Prove that {a} is a neighborhood of @ and constitutes a
basis for the system of neighborhoods at a. Prove that every subset
of X is a neighborhood of each of its points.
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2.

Let a € R and f:R — R be defined by f(z) = Oforz < a, f(z) = 1
for x > a. Prove that f is not continuous at a, but is continuous
at all other points.

.. Let f:X — Y be a function from a metric space X into a metric

space Y. Let a € X and let ®;q be a basis for the neighborhood
system at f(a). Prove that f is continuous at a if and only if for each
N € ®s@), f~1(N) is a neighborhood of a.
Let a be a point on the real line R. Prove that each of the following
collections of subsets of R constitute a basis for the system of neigh-
borhoods at a:

i) All closed intervals of the form [a — ¢, a + ¢], ¢ > 0;

ii) All open balls B(a; ¢), ¢ a positive rational number;

iii) All open balls B (a ; %), n a positive integer;

iv) All open balls B (a; 71‘), n a positive integer larger than some
fixed integer k.
Show that no finite collection of subsets of R can be a basis for the

system of neighborhoods at a.

Let a be a point in a metric space X. Let N be the set of positive
integers. Prove that there is a collection {B.,}.enx of neighborhoods
of a which constitutes a basis for the system of neighborhoods at a.
Let a and b be distinct points of a metric space X. Prove that there
are neighborhoods N, and N, of a and b respectively such that
N.N N, = 0.

Let (Xy, dv), (X2, o), . . ., (Xa, ds) be metric spaces and convert
X =1 X;
i=1

into a metric space (X, d) in the standard manner. Prove that an
open ball in (X, d) is the product of open balls from X, X5, ..., X.
respectively. Let a; € X;, 2= 1,2, ..., n, and let ®,, be a basis
for the neighborhood system at a;. Let ®, be the collection of all sets
of the form B; X B, X ... X B,, B; € ®,.. Prove that ®, is a basis
for the neighborhood system at a = (a1, @, ..., a.) € X. Let
pi:X—> X, 1=1,2,...,n, be the projection that maps pi(a) = a..
Prove that each p; is continuous. Let Y be a metric space and
f:Y — X a function. Prove that f is continuous if and only if each
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of the n functions p.f is continuous.

8. Let R be the real numbers and f:R — R a continuous function.
Suppose that for some number a € R, f(a) > 0. Prove that there
is a positive number k and a closed interval F = [a — §, a + §] for
some & > 0 such that f(z) = k for x € F.

5 LIMITS

The concept of limit of a sequence of real numbers may be gener-
alized to an arbitrary metric space. First, let us recall the appro-
priate definition in the real line.

DerintTiON 5.1 Let ay, ay, . . . be a sequence of real numbers. A real
number a is said to be the limit of the sequence a,,
as, . . . if, given ¢ > 0, there is a positive integer N
such that, whenever n > N, |a — a.| < e. In this
event we shall also say that the sequence aj, as, . . .
converges to a and write lim, a, = a.

Interpreting € as an ‘“‘arbitrary degree of closeness” and N as
“sufficiently far out in the sequence,” we see that we have defined
lim, @, = a in the event that a, may be made arbltranly close
to a by requiring that a, be sufficiently far out in the sequence.
Now, suppose that we have a metric space (X,d) and a
sequence aj, s, . .. of points of X. Given a point ¢ € X we
measure the distance from a to the successive points of the se-
quence, by the sequence of real numbers d(a, a,), d(a, a,), . . ..
It is natural to say that the limit of the sequence a,, a,, . . . of
points of X is the point a if the limit of the sequence of real
numbers d(a, a,), d(a, a;), . . . is the real number 0.

DerFiniTION 5.2 Let (X, d) be a metric space. Let a;, az, ... be a
sequence of points of X. A point a € X is said to be
the limit of the sequence ay, as, . . . if lim, d(a, a,) = 0.
Again, in this event, we shall say that the sequence
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i, Gs, . . . converges to a and write lim, a, = a.

CoroLLARY 5.3 Let (X, d) be a metric space and a;, as, . . . be a se-
quence of points of X. Then lim, a, = a for a point
a € X if and only if for each neighborhood V of a
there is an integer N such that a, € V whenever
n > N.

Proof. Let V be a neighborhood of a. For some
e> 0,a € B(a; ) C V. Thus if lim, a, = a there is
an integer N such that whenever n > N, d(a, a.) < ¢
and hence a, € V. Conversely, given ¢ > 0, B(a;¢)
is a neighborhood of a. If there is an integer N such
that for n > N, a, € B(a; ¢), then d(a, a,) < ¢ and
lim, a, = a.

If S is a set of infinite points, and there is at most a finite
number of elements of S for which a certain statement is false,
then the statement is said to be true for almost all the elements
of S. Thus lim, a, = a if for each neighborhood V of a almost all
the points a, are in V.

Continuity may be characterized in terms of limits of se-
quences in accordance with the following theorem.

Treorem 5.4 Let (X, d), (Y, d’) be metric spaces. A functionf:X — Y
is continuous at a point ¢ € X if and only if, whenever
lim, a, = a for a sequence a;, @, . .. of points of X,

lim, f(a.) = f(a).

Proof. Supposefiscontinuousat a and lim, a, = a.
Let V be a neighborhood of f(a). Then f~1(V) is a neigh-
borhood of a, so by Corollary 5.3 there is an integer N
such that a, € f~1(V) whenever n > N. Consequently,
f(a,) € V whenever n > N. Thus, for each neighbor-
hood V of f(a) there is an integer N such that f(a.) € V
whenever n > N and again, applying Corollary 5.3,
lim, f(a.) = f(a).

To prove the “if”’ part of this theorem, we shall
prove that if f is not continuous at @, then there is at
least one sequence ai, @z, . . . of points of X, such that
lim, @, = a, but lim, f(a,) = f(a) is false. Since f is not
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continuous at @, there is a neighborhood V of f(a) such
that for each neighborhood U of a, f(U) V. In par-

ticular, for each neighborhood B <a ; %), n=12 ...
f (B (a; %)) @ V. Thus, for each positive integer n,
there is a point @, with a, € B (a; %) and f(a,) & V.

Now d(a, a.) < % and therefore lim, a, = a, whereas,

lim, f(a,) = f(a) is impossible, since f(a.) & V for all n.

If lim, a, = a, we can write lim, f(a,) = f(a) as lim, f(a,) =
f(lim, a,). We may therefore describe a continuous function as
one that commutes with the operation of taking limits. It is worth
noting that in proving f is continuous whenever f commutes with
the operation of taking limits we have used the fact that the

sequence of neighborhoods B (a ;%), n a positive integer, con-

stitutes a basis for the neighborhood system at a.
In order to introduce the concept of distance from a point to
a subset we shall recall some facts about the real number system.

DeriniTioN 5.5 Let A be a set of real numbers. A number b is called
an upper bound of A if x < b for each x € A. A num-
ber ¢ is called a lower bound of A if ¢ £ x for each
xz € A. If A has both an upper and lower bound A4 is
said to be bounded.

An upper bound b* of A is called a least upper
bound (abbreviated l.u.b.) of A4 if for each upper bound
b of A, b* = b. A lower bound c* of A is called a
greatest lower bound (abbreviated g.l.b.) of A if for
each lower bound ¢ of 4, ¢ < c*.

Not every set of real numbers has an upper bound. One of
the properties of the real number system, usually referred to as
the completeness postulate, is that a non-empty set A of real num-
bers which has an upper bound necessarily has a l.u.b. Given a
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non-empty set B of real numbers which has a lower bound, the
set of negatives of elements of B has an upper bound, hence a
L.u.b. whose negative is a g.L.b. of B. Thus it follows that every
non-empty set B of real numbers which has a lower bound has
a g.lb.

The greatest lower bound of a set A of real numbers may or
may not be an element of A. For example, 0 is a g.1.b. of [0, 1]
and 0 € [0, 1], whereas 0 is also a g.1.b. of (0, 1) but 0 & (0, 1).
In any event, the g.l.b. of a set of real numbers must be arbi-
trarily close to that set.

LemMma 5.6 Let b be a greatest lower bound of the non-empty subset
A. Then, for each ¢ > 0, there is an element x & A such
that

z—b<e

Proof. Suppose there were an ¢ > 0 such that
z—b=¢ for each tE A. Then b+ ¢ < z for each
2z € A and b 4 ¢ would be a lower bound of A. Since b
is a g.l.b. of A, we obtain the contradiction b + ¢ = b.

CoroLLARY 5.7 Let b be a greatest lower bound of the non-empty sub-
set A of real numbers. Then there is a sequence a,,
@, . . . of real numbers such that a, € A for each n
and lim, a, = b.

Proof. Fore = 71‘ we obtain an element a, € A

such that a, — b < ;1‘ Since b is a lower bound of A4,

0 = a, — b. Therefore lim, a, = b.

DerinNITION 5.8 Let (X, d) be a metric space. Let a € X and let A be
a non-empty subset of X. The greatest lower bound
of the set of numbers of the form d(a, z) for z € A is
called the distance between a and A and is denoted by
d(a, 4).

From Corollary 5.7 we obtain:
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CoroLLARY 5.9 Let (X, d) be a metric space, a € X, and 4 a non-
empty subset of X. Then there is a sequence a,, a2, . . .
of points of A such that lim, d(a, a.) = d(a, A).

EXERCISES

k
1. Let X;, X,, ..., X; be metric spaces and convert X = II X, into

1=1
a metric space in the standard manner. Each of the points ay, as, . . .
of a sequence of points of X has k coordinates; that is a, =
(at,a3,...,a0) €EX,n=1,2,....Letc= (cr, ¢, ..., ) € X.
Prove that lim, a, = ¢ if and only if lim, af =¢;,2=1,2,..., k.
2. In each of the three metric spaces (R*, d), (R*, d’), (R* d’) con-
sidered in Section 2, prove that limits of sequences are the same.

3. Prove that a subsequence of a convergent sequence is convergent
and converges to the same limit as the original sequence.

4. A sequence of real numbers a, az, . . . is called monotone non-decreas-
ing if a; = a;+1 for each 7 and called monotone non-increasing if
a; = a;41 for each ¢. A sequence which is either monotone non-
decreasing or monotone non-increasing is said to be monotone. The
sequence is said to be bounded above if there is a number K such that
a; £ K for each ¢ and bounded below if there is a number M such
that a; = M for each 7. A sequence which is both bounded above
and bounded below is called bounded. Prove that a convergent se-
quence of real numbers is bounded. Prove that a monotone non-
decreasing sequence of real numbers which is bounded above
converges to a limit a and that a is the L.u.b. of the set {a;, a, . . .}.
Similarly prove that a monotone non-increasing sequence which is
bounded below converges to a limit b and that b is the g.Lb. of the
set {ai, az, . . .}.

5. Let a;, as, . . . be a bounded sequence of real numbers. Since each
of the sets A, = {@n, @nyy, - - -} isbounded we may set v, = g.l.b. 4,
un, = Lu.b. 4,. Observe that v, < u,; v, v, . . . is monotone non-
decreasing and bounded above; and w,, us, . .. is monotone non-
increasing and bounded below. Let V = lim, v, and U = lim, %y.
Prove that there are subsequences of a,, a,, . . . which converge to
U and V respectively (thus a bounded sequence of real numbers has
a convergent subsequence). Prove that a,, a,, . . . converges if and
onlyif U=1V.
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6. Let (X, d) be a metric space and 4 a non-empty subset of X. For
z, y € X, prove that d(z, A) = d(z, y) + d(y, 4).

7. Let A be a non-empty subset of a metric space (X, d). Define the
function f: X — R by f(z) = d(z, A). Prove that f is continuous.

8. Let A be a non-empty subset of a metric space (X, d) and let z € X.
Prove that d(z, A) = 0 if and only if every neighborhood of z con-
tains a point of A.

9. Let (X, d) be a metric space. Define a distance function d* on
X X X by the method of Theorem 2.3. Prove that the function
d:(X X X, d*) — (R, d) is continuous.

6 OPEN SETS AND CLOSED SETS

In a metric space, the open ball B(a; §) is a neighborhood of each
of its points (Lemma 4.5). The collection of subsets possessing
this property plays a fundamental role in topology.

DEerFiNITION 6.1 A subset O of a metric space is said to be open if O is
a neighborhood of each of its points.

Open sets may be characterized directly in terms of open
balls.

THEOREM 6.2 A subset O of a metric space (X, d) is an open set if and
only if it is a union of open balls.

Proof. Suppose O is open. Then for each a € O,
there is an open ball B(a; d,) C O. Therefore O =
Uaeo B(a; ) is a union of open balls. Conversely, if 0
is a union of open balls, then using the centers of these
balls as the elements of an indexing set we can write
0 = Uyer B(a; 8,). If z € O, then z € B(a; d,) for some
a € I. B(a;d,) is a neighborhood of z and since
B(a; 8,) C O, by N3, O is a neighborhood of z. Thus O
is a neighborhood of each of its points, and by Definition
6.1, O is open.
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Most of the functions considered in topology are continuous.
Open sets provide a simple characterization of continuity.

Tueorem 6.3 Let f:(X, d) — (Y, d’). Then f is continuous if and only
if for each open set O of Y, the subset f~(0) is an open
subset of X.

Proof. First, suppose f is continuous. Let O C Y
be open. We must show that f~!(0) is open; that is,
f~1(0) is a neighborhood of each of its points. To this
end, let a € f~1(0), then f(a) € O and O is a neighbor-
hood of f(a). Since f is continuous at a, Theorem 4.7
may be applied, yielding f-1(0) is a neighborhood of a.

Conversely, suppose for each open set O C Y, f~1(0)
is open. Let a € X and let M be a neighborhood of f(a).
Then there is an ¢ > 0 such that B(f(a); ¢) C M. But
B(f(a); ¢) is open and therefore f~}(B(f(a); ¢)) is open.
Since a € f-1(B(f(a); ¢)), this subset is a neighborhood
of a. Therefore f~!(M) contains a neighborhood of a and
fis continuous at a. Since a was arbitrary, f is continuous.

Just as the collections of neighborhoods of points in a metric
space possess certain significant properties so do the collection
of open sets in a metric space.

THEOREM 6.4 Let (X, d) be a metric space.
01. The empty set is open.

02. X isopen.
03. If 0y, Oy ..., O, are open, then O; N 0: N
...MN 0, is open.

04. If for each « € I, O, is an open set, then
Ueer O, is open.

Proof. The empty set is open, for in order for it
not to be open there would have to be a point z € 9.
Given a point a € X, for any § > 0, B(a; 8) C X and
therefore X is a neighborhood of each of its points; that
is, X isopen. To prove03,leta €E0; N 0. N . .. N Oy,
where forz = 1,2, ..., n, O, is open. Then each O;is a
neighborhood of a. By N4, the intersection of two neigh-
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borhoods of a is again a neighborhood of a, and hence
by induction, the intersection of a finite number of
neighborhoods of a is again a neighborhood of a. There-
fore O, N O: N ... N O, is a neighborhood of each of
its points. Finally, to prove 04, let a € 0 = U,g1 O,
where for each a € I, O, is open. Then a € Op for some
B € I and Op is a neighborhood of a. Since O3 C O, by
N3, O is a neighborhood of a. Therefore O is a neighbor-
hood of each of its points.

DEFINITION 6.5 A subset F of a metric space is said to be closed if its
complement, C(F), is open.

In the real number system, a closed interval [a, b] is a closed
set, for its complement is the union of the two open sets O, and O,
where O, is the set of real numbers z such that £ < a and O, is
the set of real numbers z such that £ > b. A common mistake is
the assumption that a set cannot be both open and closed. In
any metric space (X, d), the two sets @ and X are open, and
therefore their complements X and @ are closed. Thus, X and
also @ are both open and both closed. Whether or not, in a given
metric space, there are other subsets that are simultaneously open
and closed, is a significant topological property, which we shall
subsequently describe by the adjective “‘connected.” In any event,
the adjectives open and closed are not mutually exclusive. Nor,
for that matter, are they all-inclusive, for we shall shortly give
an example of a subset of the real number system that is neither
open nor closed.

DEerFINITION 6.6 Let A be a subset of a metric space X. A point b € X
is called a limit point of A if every neighborhood of b
contains a point of A different from b.

If b is a limit point of A then each of the open balls B (b; %)

contains a point a. € 4 and lim, a, = b. Thus a limit point of
a set is the limit of a convergent sequence of points of A. The
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converse is false, for the point b may be a point of A while for
some &, B(b; §) contains no point of A other than b. Thus b is not
a limit point of A although the sequence b, b, . . . converges to b.
In this latter case b is called an tsolated point of A.

THEOREM 6.7 In a metric space X, a set F C X is closed if and only if
F contains all its limit points.

Proof. Let F’ denote the set of limit points of F.
First suppose F is closed and consequently C(F) is open.
Choose a point b & F. Since C(F) is open there is a
8 > 0 such that B(b;8) CC(F) or B(b;s) N F = &.
Hence b & F' and F’ C F.

Conversely, suppose F' C F, or equivalently,
C(F) CC(F"). If b€ C(F), then b& F'. 1t follows
that for some d > 0, B(b;8) N F = &, or B(b;8) C C(F).
Hence C(F) is open and F is closed.

THEOREM 6.8 In a metric space (X, d), a set F C X is closed if and
only if for each sequence ay, as, . . . of points of F that
converges to a point a & X we havea € F.

Proof. First, let F be closed. Suppose lim, a, = a
and a, €EF for n =1, 2, .... If the set of points
{a1, a2, ...} is infinite then every neighborhood of a
contains infinitely many points of F, a is a limit point
of F, and so by Theorem 6.7, ¢ € F. If this set of points
is finite, then for some integer N, a, = a. whenever
n, m > N. Since lim, a, = a, d(a,,a) = 0forn > N or
a, = a, whence a € F. Conversely, suppose that F is a
set such that for each sequence with lim, a, = a and
a, € F for all n, we have a € F. If b is a limit point of
F then b is the limit of a convergent sequence of points
of F and b € F. Thus by Theorem 6.7 F is closed.

Finally, we may characterize closed sets in terms of distance
from a point to a set.

THEOREM 6.9 A subset F of a metric space (X, d) is closed if and only
if for each point ¢ € X, d(z, F) = 0 implies z & F.
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Proof. First, suppose F is closed. Let z € X be
such that d(z, F) = 0. By Corollary 5.9 there is a se-
quence of points of F such that hm, d(z, a,) = 0. Thus,
every neighborhood of z contains points of F. If some
a, = z, z is in F. Otherwise each a, is different from z,
so that z is a limit point of the sequence and hence of F.
Thus, by Theorem 6.7, z € F. Conversely, suppose that
F is such that d(z, F) = 0 implies z € F. If x is a limit
point of F then d(z, F) = 0. Thus in this case F contains
all its limit points and is closed.

Continuity may be characterized by means of closed sets.

THEOREM 6.10 Let (X,d), (Y,d’) be metric spaces. A function
f:X — Y is continuous if and only if for each closed
subset A of Y, the set f~1(4) is a closed subset of X.

Proof. For A C Y, we have C(f~!(4)) =
f~Y(C(4)). But f is continuous if and only if the inverse
image of each open set is an open set, and this is true
if and only if the inverse image of each closed set is a

. closed set.

As a final result in this section we record the following facts
about closed sets.

THEOREM 6.11 Let (X, d) be a metric space.
Cl. X is closed.
C2. @ is closed.
C3. The union of a finite collection of closed sets
is closed.

C4. The intersection of a family of closed sets is
closed.

Proof. C1 and C2 have already been discussed.
C3 and C4 follow from the application of DeMorgan’s
formulas to the corresponding properties O3 and 04 of
open sets.

The union of closed sets need not, in general, be a closed set,
as may be seen by the following example. For each positive inte-
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ger n let F, be the closed interval [%, l]. Then U F, = (0, 1],
n=1

where (0, 1] is the set of real numbers z such that 0 < z < 1.
The set (0, 1] is not closed, for 0 is a limit point of the set but
is not in the set.

EXERCISES

1. Let (X, d),72=1,2,...,nbemetric spaces. Let X = ﬁ X and

i=1
let (X, d) be the metric space defined in the standard manner by
Theorem 2.3. Forz =1, 2, ..., n, let O; be an open subset of X;.
Prove that the subset O, X 0; X ... X O, of X is open and that
each open subset of X is a union of sets of this form. [A collection of
open sets of a metric space is called a basis for the open sets if each
open set is a union of sets in this collection. For example, the open
balls in a metric space form a basis for the open sets.]

2. Let X be a set and d the distance function on X defined by
d(z, z) = 0, d(z, y) = 1 for z = y. Prove that each subset of (X, d)
is open.

3. Let (X, d1), (Y, d;) be metric spaces. Let f: X — Y be continuous.
Define a distance function d on X X Y in the standard manner.
Prove that the graph I, of f is a closed subset of (X X Y, d).

4. Let f:R — R be defined by
f(z) = ;10, z >0,

fz) =0,z 0.
Prove that the graph I is a closed subset of (R?, d), but that f is
not continuous.

5. Let A be a closed, non-empty subset of the real numbers that has
a lower bound. Prove that A contains its greatest lower bound.

6. Let A be a subset of a metric space. Let A’ be the set of limit points
of A and A‘ the set of isolated points of A. Prove that A’ N A*= @
and A CA’'U A'. Theset A = A’ \U A‘is called the closure of A.
Prove that z € 4 if and only if there is a sequence of points of 4
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which converges to z. Prove that if F is a closed set such that A C F
then 4 C F. Prove that 4 is the intersection of all such closed sets
F and hence is closed.

7 SUBSPACES AND EQUIVALENCE
OF METRIC SPACES

Let (X, d) be a metric space. Given a non-empty subset Y of X
we may convert Y into a metric space by restricting the distance
function d to Y X Y. In this manner each non-empty subset ¥
of X gives rise to a new metric space (Y,d | Y X Y). On the other
hand, we may be given two metric spaces (X, d) and (Y, d'). If
Y C X, it makes sense to ask whether or not d’ is the restriction
of d.

DEerFINITION 7.1 Let (X, d) and (Y, d') be metric spaces. We say that
(Y, &) is a subspace of (X, d) if:

1. YCX;
2.d=d|YXY.

Let Y C X and 7:Y — X be an inclusion mapping. Denote
by © X4:Y XY - X X X the inclusion mapping defined by
(T X 1) (%, ¥2) = (1, ¥2). Then (Y, d’) is a subspace of (X, d) if
the diagram

YXY.

\d"
X1 R
/

XXX

is commutative. There are as many subspaces of a metric space
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(X, d) as there are non-empty subsets of X.

ExampLE 1

ExXAMPLE 2

ExampLE 3

ExamPLE 4

Let Q be the set of rational numbers. Definedg:Q X Q —» R
by de(a, b) = |a — b|. Then (Q, do) is a subspace of (R, d).

Let I (the unit n-cube) be the set of all n-tuples (zi, 2,

., Zn) of real numbers such that 0 < z; = 1, forz = 1,
2,...,n Defined.:I" X I"—> R by d.((z1, x2, . . ., Zu),
Wy ys - Ym) = m?:;i‘rgllm {lz: — y:}. Then (I, d.) is

a subspace of (R", d).

Let S* (the n-sphere) be the set of all (n + 1)-tuples
(%1, Z2, . . ., ZTay1) Of real numbers such that 2} + 23 +
...+ 2241 = 1. Define ds:S" X S* — R by

n+1
ds((xl; T2y« 0oy 23,.4.1), (yl; Yo, .., yﬂ+l)) = \/ii:l (xi - yi)2°
Then (S* ds) is a subspace of the Euclidean space
(R, d').

Let A be the set of all (n + 1)-tuples (z1, 23, - . . , Zns1) Of
real numbers such that z,,y = 0. Define d4:4 X 4 — R
by

da((@, 22y . .+, 20, 0), (Y1, Y2y -« -, Yn, 0))

= maximum {|z; — yi}.
1Sisn

Then (A4, d4) is a subspace of (R**, d).

TuaeorEM 7.2 Let (Y, d’) be a subspace of (X, d). Then the inclusion

mapping ¢: ¥ — X is continuous.

Proof. Given a € Y and ¢ > 0, choose 6 = ¢. If
d'(a, y) < 3, then d(i(a), i(y)) = d(a, y) = d'(a, y) <
d=¢

The metric space (4, d4) of Example 4 is in most respects a
copy of the metric space (R*, d). The only distinction between
(R*, d) and (4, d4) is that a point of R" is an n-tuple of real
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numbers, whereas a point of 4 is an (n 4+ 1)-tuple of real numbers
of which the last one is zero. The relationship between the metric
spaces (R", d) and (4, d,) is an example of the relationship called
“metric equivalence” or “isometry.”

DeriniTioN 7.3 Two metric spaces (4, d4) and (B, dg) are said to be
melrically equivalent or isometric if there are inverse
functions f:4 — B and g:B — A such that, for each
z, y € A, ds(f(x), f(y)) = da(z,y), and for each u,
v € B, da(g(u), g(v)) = dg(u, v). In this event we shall
say that the metric equivalence or isometry is defined by
fandg.

THEOREM 7.4 A necessary and sufficient condition that two metric
spaces (4, d4) and (B, dg) be metrically equivalent is
that there exist a function f:4 — B such that:

1. f is one-one;
2. f is onto;
3. for each z, y € A, ds(f(2), f(¥)) = da(z, y).

Proof. The stated conditions are necessary, for if
(4, d4) and (B, dg) are metrically equivalent, there are
inverse functions f:A — B and ¢g:B — A, and therefore
f is one-one and onto. Conversely, suppose a function
f:A — B with the stated properties exists. Then f is
invertible and the function g:B — A such that f and ¢
are inverse functions is determined by setting ¢(b) = a
if f(a) = b. For u, v € B, let z = g(u), y = ¢g(v). Then

da(9(u), 9(v)) = da(z, y) = ds(f(z), f(¥)) = ds(u, ).

Given metric spaces (A,d,) and (B,ds) and functions
fi:A—> Bandg:B— A, let us denote by f X f:4 X A—>B X B
the function defined by setting (f X f)(z,y) = (f(z), f(y)) for
z,y € A and, similarly, let g X g:B X B— A X A be defined
by setting (g X g)(u, v) = (g(u), g(v)) for u,v € B. The state-
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ment that ds(f(x), f(y)) = da(z, y) for z, y € A is equivalent to
the statement that the diagram

is commutative (one may also describe this relation by saying
that the function f: A — B is ‘“distance preserving’’). In terms of
diagrams, the statement that (4, d4) and (B, ds) are metrically
equivalent is the statement that there exist functions f:4 — B,
g:B — A such that the four diagrams

4 A .4 B B B
B g

BXB

/' e

AXA

are commutative (where i,:4 — 4 and i3:B — B are identity
mappings). The first two diagrams express the fact that f and ¢
are inverse functions and the last two diagrams express the fact
that f and g “preserve distances.” Since the distance between
z and y in A is the same as the distance between f(z) and f(y)
in B, f is continuous. Similarly, g is continuous. Thus:
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LEmma 7.5 Let a metric equivalence between (4, d4) and (B, dg) be
defined by inverse functions f:A — B and g: B — A. Then
both f and g are continuous.

From the point of view of considerations that relate only to
the concept of continuity, the relationship of metric equivalence
is too narrow. We are led to define a broader concept of equiv-
alence in which we drop the requirement of ‘“preservation of
distance’’; that is, the commutativity of the last pair of diagrams,
and merely require that the first two diagrams be commutative
and the functions in these diagrams be continuous.

DEFINITION 7.6 Two metric spaces (4, d4) and (B, dg) are said to be
topologically equivalent if there are inverse functions
f:A — B and g:B — A such that f and g are continu-
ous. In this event we say that the topological equiva-
lence 13 defined by f and g.

As a corollary to Lemma 7.5 we obtain:

CoroLLARY 7.7 Two metric spaces that are metrically equivalent are
topologically equivalent.

The converse of this corollary is false; that is, there are metric
spaces that are topologically equivalent, but are not metrically
equivalent. For example, a circle of radius 1 is topologically equiv-
alent to a circle of radius 2 (considered as subspaces of (R? d)),
but the two are not metrically equivalent.

The following two results furnish a sufficient condition for
the topological equivalence of two metric spaces with the same
underlying sets.

LEmmMa 7.8 Let (X,d;) and (X, d,) be two metric spaces. If there
exists a number K > 0 such that for each z, y € X,
do(z, y) < Kdi(z, y), then the identity mapping

1:(X, dy) = (X, dy)
is continuous.
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Proof. Given ¢> 0 and a € X, set § = ¢/K. If
di(z, a) < & then do(i(x), i(a)) = do(z, a) = K-di(z,a) <
Ké = e

CoroLLARY 7.9 Let (X, d) and (X, d’) be two metric spaces with the
same underlying set. If there exist positive numbers
K and K’ such that for each z, y € X,

d,(x’ y) § K'd(ﬁ, y)’
dz,y) S K'-d'(z, y),

then the identity mappings define a topological
equivalence between (X, d) and (X, d').

We have discussed the two metric spaces (R", d) and (R*, d'),
where the distance function d is determined by the maximum
distance between coordinates, and the distance function d’ is what
is called the Euclidean distance function. For each pair of points
2,y € R", the inequality d(z,y) S d'(z,%) S Vn d(z, y) holds.
It therefore follows from Corollary 7.9 that the metric spaces
(R, d) and (R", d’) are topologically equivalent.

TrEOREM 7.10 Let (X,d) and (Y,d’) be two metric spaces. Let
f:X — Y and ¢g: Y — X be inverse functions. Then the
following four statements are equivalent:

1. f and ¢ are continuous;

2. A subset O of X is open if and only if f(O) is an
open subset of V;

3. A subset F of X is closed if and only if f(F) is a
closed subset of V;

4. For each a € X and subset N of X, N is a
neighborhood of a if and only if f(N) is a neighborhood
of f(a).

Proof. 1= 2, Let O be an open subset of X. Then
f(0) = ¢g~1(0) is open since ¢ is continuous. Conversely,
if f(O) is an open subset of Y, then f~1(f(0)) = 0 is
open since f is continuous.

2=>4.Foreacha € X and N C X, N is a neigh-
borhood of a if and only if N contains an open set O
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containing ¢ if and only if f(N) contains an open set
0’ = f(0) containing f(a) if and only if f(N) is a neigh-
borhood of f(a).

4=1. Let a € X and let U be a neighborhood
of f(a). Then f~}(U) is a neighborhood of a, for
U = f(f~1(U)) is a neighborhood of f(a). Thus f is
continuous. Similarly, let bE Y and let V be a
neighborhood of g(b). Then g~*(V) = f(V) is a neigh-
borhood of f(g(b)) = b, and ¢ is continuous.

Thus, statements 1, 2, and 4 are equivalent. We
leave it to the reader to verify that statements 2 and
3 are equivalent.

Statement 1 in Theorem 7.10 is, of course, the statement that
the metric spaces (X, d) and (Y, d’) are topologically equivalent.
Consequently, Theorem 7.10 asserts that two metric spaces are
topologically equivalent if and only if there exist inverse functions
that establish either a one-one correspondence between the open
sets of the two spaces, a one-one correspondence between the
closed sets of the two spaces, or a one-one correspondence between
the complete systems of neighborhoods of the two spaces.

Both metrically equivalent and topologically equivalent are
equivalence relations defined on a collection of metric spaces. By
Corollary 7.7, each equivalence class of metrically equivalent
metric spaces is contained in an equivalence class of topologically
equivalent metric spaces. Distinguishing which topologically
equivalent equivalence class a metric space belongs to is a coarser,
but consequently more fundamental, distinction. By Theorem
7.10, this is determined by the collection of open sets, or the
“topology”’ of the space.

EXERCISES

1. For each pair of points a, b € R", prove that there is a topological
equivalence between (R", d) and itself defined by inverse func-
tions f:R*— R* and ¢:R" — R" such that f(a) = b. [Hint:
Ifa= (@, ay ..., a), b= (b, by, ..., ba), define f by setting
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@, 2s ..,z =@+ b —a,t2+be—as...,2,+ by — an).]
Prove that the open interval (—=/2, x/2), considered as a subspace
of the real number system, is topologically equivalent to the real
number system. Prove that any two open intervals, considered as
subspaces of the real number system, are topologically equivalent.
Prove that any open interval, considered as a subspace of the real
number system, is topologically equivalent to the real number
system.
Fort=1,2, ..., n, let the metric space (X, d;) be topologically
equivalent to the metric space (Y, di). Prove that if

X=H X ad Y=17
are converted into metric spaces in the standard manner, then these
two metric spaces are topologically equivalent.
The open n-cube is the set of all points x = (x1, 22, . . ., 2n) € R
such that 0 < z; <1 forz=1, 2, ..., n. Prove that the open
n-cube, considered as a subspace of (R", d), is topologically equiva-
lent to (R», d). [Hint: Use the results of Problems 2 and 3.]
Let XRY mean that the metric space X is isometric to the metric
space Y. Prove that: (i) XRX; (ii) if XRY then YRX; and (iii)
if XRY and YRZ then XRZ. Do the same if XRY means that the
metric space X is topologically equivalent to the metric space Y.
Let (Y, d') be a subspace of the metric space (X, d). Prove that a
subset O’ C Y is an open subset of (¥, d’) if and only if there is an
open subset O of (X, d) such that O’ = ¥ N O. Prove that a subset
F' C Y is a closed subset of (Y, d’) if and only if there is a closed
subset F of (X, d) such that 7/ = Y N F. For a peint a € Y, prove
that a subset N’ C Y is a neighborhood of a if and only if there is
a neighborhood N of a in (X, d) such that N' = Y N N.
Let (Y, d') be a subspace of (X, d). Let a,, a,, . . . be a sequence of
points of ¥ and let ¢ € Y. Prove that if lim, a, = ain (Y, d’), then
lim, a. = ain (X, d). [The converse is false unless one assumes that
all the points mentioned lie in Y'; see the next problem.]
Consider the subspace (@, dq¢) (the rational numbers) of (R, d). Let
ay, as, . . . be a sequence of rational numbers such that lim, a, = V.
Prove that, given ¢ > 0, there is a positive integer N such that for
n, m > N, |a. — an| < . Does the sequence a;, a, . . . converge
when considered to be a sequence of points of (Q, dg)?
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8 AN INFINITE DIMENSIONAL EUCLIDEAN SPACE

In this section we shall define a metric space H, sometimes called
Hilbert space, which contains as subspaces isometric copies of the
various Euclidean spaces (R*, d’). A point u of H is a sequence

Uy, Us, . . . Of real numbers such that the series 5 u? is convergent.
=1

Let v = (uy, %, ...) and » = (v, vy, .. .) be in H. Our intention

is to define a metric on H by setting

d(u, v) = [é‘ (u; — vi)z]m.

In order to do this we must first know that the series in brackets
converges. To accomplish this we shall make use of the following
result, which is frequently referred to as Schwarz’s lemma or
Cauchy’s inequality.

Lemma 8.1 Let (wy, uz, ..., un), (0, 0s...,v.) be n-tuples of real
numbers, then

n n 1/2 n 1/2
Euivgé[zu?] [Evf] .
i=1 i2h i=h

Proof. It suffices to prove that

n 2 n n
(2 uw;) é(z u?)(z vf)
i=1 t=1 1=1

To this end, we consider, for an arbitrary real number X,

the expression % (u; + ;)2 We have,
=1

n n n n
0= 2 (wi+M)*= 2 ul +2\ 2 uw; + A2 Z o}
i= i=1 i=1 i=1
Therefore, the quadratic equation in X,
= Z U+ T uvi+ 3o
i=1 i=1 i=1

can have at most one real solution. Consequently,
n 2 n n
(zu.-v,')—<2u3)<zvf)§o,
i=1 i=1 i=1
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n 2 n n
( z uivi) = ( z u?)( v?)-
i=1 i=1 i=1

CoroLLARY 8.2 Let u = (w1, ug, ...), v = (v, 0, . ..) be in H with

U= 2 u, V= 3 v Then the series = uw, Is
=1

t=1 i=1

or

1=

absolutely convergent and = |uwi| < UY2V12,
i=1

Proof. For each positive integer n
n n n 1/2 n 1/2
B fuod = B fudlod 5[ 3 tude [ 3 ]
i=1 i=1 i=1 i=1
§ Ul/2V1/2'

Thus the partial sums of this series of positive terms
are bounded and the series converges to a limit not
greater than UV2V1/72,

Furthermore, if @ and B are real numbers and we set
au + Bv = (au, + Bv, auz + Pv,, . ..) then au + Bv is also in
H for 5 (au; + Bv;)? is the sum of three absolutely convergent

i=1
series. In particular v + v € H and
il (ui +v)? = f:l [ui + 2up, + 2] < il u; +2 51 [uw| + f:l v

SU 42UV V2 4 V = (UY2 4 V22,

Taking square roots we obtain
© 1/2
COROLLARY 8.3 [ 2 (u; + v.~)2] < UVr 4 yire,
t=1

TrEOREM 8.4 (H, d) is a metric space, where d is defined by d(u, v) =
© 1/2
[_El (u; — v:’)z] :

Proof. 1t is readily apparent that d satisfies all the
properties of a distance function with the exception of
the property that d(a, b) < d(a, ¢c) + d(c, b) for a, b,
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cEH Leta=(a, az ...), b=(by, by, ...), ¢ =
(cy,c2,...).Setu =a —c,v = ¢ — bso that u; = a; — ¢,
v; = ¢; — bi. Then u; + v; = a; — b; and Corollary 8.3
yields the desired inequality.

Let E* be the collection of points 4 = (u;, us, . . .) € H such
that u; = 0 for j > n. To each point a = (a), a2, ..., a,) € R*
we can associate the point h(a) = (ay, as,...,a,,0,0,...) € E",
Clearly 4 is a one-one mapping of R* onto the subspace E* of H.

Using d'(a, b) = [Z:l (ai — b.~)2]”2 in B*, d'(a, b) = d(h(a), h(b)).

Since E™ is a metric space, (R", d’) is a metric space and A is an
isometry of (R", d’) with (E", d|E").

EXERCISES

1. Let V be a vector space with the real numbers R as scalars. A
function A:V X V — R is called a bilinear form if A(xa + b, ¢) =
adA(a,c) + BA(b,c) and A(a, Bb + vc) = BA(a, b) + vA(a, ¢) for
scalars o, 8, and ¥y € R and vectors a, b, and ¢ € V. A bilinear
form is called positive definite if A(x,z) > 0, unless z is the zero
vector. Define a vector space structure on Hilbert space H and show

that foru = (uy, ug,...)andv = (0, v,,...) € H, A(y,v) = 51 UDg

yields a positive definite bilinear form.

2. Let V be a vector space with the real numbers R as scalars. A norm
on V is a function N:V — R such that (i) N(») 2 0 forallvE V;
(1i) N(v) = 0if and only if v = 0; (iii) N(u + v) £ N(u) + N(v) for
allu, v € V; (iv) N(av) = ||N(v) foralla € R, v € V. Prove that
if A is a positive definite bilinear form on V, then N(v) = (A (v, v))V/?
defines a norm on V.

3. Let N be a norm on a vector space V as defined in the previous
problem. Set d(u, v) = N(u — v) foru,v» € V. Prove that (V, d) isa
metric space. Prove that the following functions are continuous:
(i) a:V X V — V defined by a(u, v) = u + v; (ii) b:V — V defined
by b(v) = —v; (iii) c:R X V — V defined by c(a, v) = av.
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For further reading, Kaplansky, Set Theory and Metric
Spaces, Kolmogorov and Fomin, Elements of the Theory of Func-
tions and Functional Analysis, and Simmons, Iniroduction to

Topology and Modern Analysis all have excellent chapters on
metric spaces.
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