Suggestive Topics: Observation • Software Implementation • 'Language of Mathematics' • Abstract Data Types (arrays, LLs, queues/stacks, BSTs, hash tables) • Sorting and Selection • Asymptotic Notations • Philosophical Paradigms • Models of Computation • Optional Assignment • "Time Management"

Minds Matter Philadelphia, Math Session #4 (2021-22) Algorithmic Problem-Solving [recording]

Saturday Math Tutoring Activities

Dachao⁺ (presenter) Kathy (co-host)

$$(\pi < \pi^2) \Rightarrow (\pi = 5)$$
 ?

Minds Matter Philadelphia Sophomores with Class of 2024, Fall 2021 December 4, 2021 10:45-11:30 a.m.

⁺Correspondence to Ms. Nancy at nancy.olewnik@mindsmatterphilly.org

About Me (Dachao Sun)

Current Graduate Student/Inquirer in Literacy, Reading/Writing Education at the University of Pennsylvania (2021-22) Computing Science: Computer Graphics, and Image Analysis and Computational Photography Algorithms (2014-18)

Engineering Student in College (pre-2014)

Observation

Ob`serve': It means to take **notice** of by appropriate conduct; to conform one's action or practice to; to keep; to *heed* (i.e. mind, regard with care) (Webster's 1913 Dictionary)

E.g. The number of footsteps it takes from bedroom to answer a door bell.

Optical Chasm (Wikipedia, image from Andreas Vesalius' Fabrica, 1543)

Smallest among {70, 31, 9, 78, 36, 73, 50, 40, 21, 75} ?

(VectorStock, https://www.vectorstock.com/royalty-free-vector/cartoon-modern-city-panorama-with-glass-vector-21504138)

Algorithms

(From Wikipedia) The word *algorithm* is derived from the name of the 9th-century Persian mathematician Muḥammad ibn Mūsā al-Khwārizmī, whose *nisba*, an adjective indicating the person's place of origin etc. in Arabic names (identifying him as from Khwarazm) was Latinized as Algoritmi.

An algorithm is a precise rule (or set of rules) specifying **how to solve some problem**; a set of **procedures** *guaranteed* to find the solution to a problem.

(Webster's 1913 Dictionary)

A recipe (a conceptual one) to do some task.

Essential qualifications for a "good" algorithm:

- Always terminates, and produces correct results
- <u>Efficient</u>: leverage of computational resources (minimizes running time, memory, network bandwidth..)
- Simple to describe, "paraphrase", and analyze

Data Structures / Two Basic Abstract Data Types

Data structures are the actual **containers of data elements**, a little bit similar to the role of symbolic placeholders in algebra/arithmetic.

Sets/Dictionaries-an "abstract" data type: one that supports the following operations,

1. Insert; 2. Remove; 3. Find

Arrays: allows retrieval or modification of any element in "O(1)" time.

Linked Lists: related questions are in particular popular in job interviews, e.g.

- Insert or delete a node in a linked list
- Reverse a linked list

head \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow NULL

C++ Programming Syntaxes

nain onn	
nan .coo	
the second se	

```
Semi-colons; equality
 1 #include <iostream> // premable: some "libraries" included
                                                                     sign as assignment;
 2 #include <stdlib.h>
 3
   //using namespace std;
                                                                     "<u>C</u>haracter <u>OUT</u>put";
 4
 5
   int main()
                                                                     "//" or "/* */" to comment:
6 - {
 7
      // Declare a variable & specify its value
                                                                     Brackets "[.]" can be
 8
      // using the "assginment" ("=") operator
                                                                     thought of as a symbolic
9
      int b = 37;
10
                                                                     notation for indexing;
11
      // "Print" stuff to console
                                                                     Parentheses suggest to
12
       std::cout << b << "\n";</pre>
13
                                                                     call/use an already
14
       // Explicit declaration of an array (of five integers)
                                                                     written modular routine
15
       int array[5] = \{2, 0, 2, 1, 999\};
                                                                     of code, a.k.a. function
16 }
```

There is a "terminal" or "console" for results

Divergence: Implementing a "Data" Problem on Computer

Realization or *implementation* (represent by instance) of a problem could be fun.

We need some data first. How to generate a dozen of (pseudo-)random integers?

Craft such data idea in programming language C++ (1985-).

- GDB Online (primary): http://www.onlinegdb.com
- OneCompiler: http://onecompiler.com/cpp
- Programiz: http://www.programiz.com/cpp-programming

Exercise: Try to **make an array** for the following {83, 86, 77, 15, 93, 35, 86, 92, 49, 21, 62, 27, 90, 59, 63}, i.e. set of 15 integers And, calculate their **average** and **print it out**.

Sorting and Selection (by rank)

"Have you got everything sorted?"

Thinking about the process of sorting, we probably need to (know how to) **compare** elements of objects, e.g. two integers.

Sorting (a set of objects or a "sequence", not only numberable but also *comparable*) == to shuffle them around until somehow things are all in ascending (or descending) order in that each element is "smaller" (or "larger") than the next consecutive one.

Insertion Sort -- Scan the sequence and find-and-put the smallest element at front.

<u>Bubble Sort</u> -- Keep comparing consecutive pairs of elements, swapping the larger one "up" into a smaller-larger pair, all the way up till the end of sequence, and repeat.

<u>Merge Sort</u> -- Break sequence into sub-parts, "recursively" sort each, and merge them together in a way such that the outcome is also sorted (divide and conquer).

QuickSort -- Partition the sequence keyed on a "pivot" element, recursively sort halves

Selection == given a specified "rank" (the position in the ordered sequence), retrieve the corresponding element of data.

Example: <u>Pseudocode</u> Description of "Bubble Sort"

The *pseudocode* of an algorithm is a "plain language" description of the steps in it or another hardware/software system that implements it.

An <u>algorithm of sorting</u>, then, applies on a (generically speaking) <u>sequence</u> by changing (via shuffling or re-positioning) the orders of elements until they are sorted, either ascending or descending, such that any consecutive pairs of elements are all in the increasing (or all decreasing) order.

Question: Is this sequence sorted? {3, 1, 4, 1, 5, 9, 2, …} Why or why not?

How can I make it "more sorted"?

Proposal - Bubble Sort:

Repeat for *n* times (where n is the total # of elements):

Iterate through all elements, and <u>at the i-th</u> location:

If element i and element (i+1) were out of order: swap them

What's Next ...

"The Language of Mathematics": *Counting* and *measurement* are two different human-cognitive conceptions, upon the formulation of which numbers arose (Devlin, 2012, 4.2). "While logic provides a useful model of mathematical reasoning ... in adopting this broader, societal perspective, I believe this book still help negotiate the transition from high school (to university mathematics) and also anyone develop better reasoning skills." (Preface)

Asymptotic Notations

Models of Computation

Algorithm Design "Philosophical" Paradigms

- Incremental Construction,
- Iterative Refinement,
- Divide and Conquer, and more..

"Time Management"

(Carnegie Mellon, 2008)

- Proposed by American educator Stephen Covey, "The Eisenhower Matrix"
- We can always change the plan, but only if and once you *have* one!
- Try to be on-time; learn to say "No"
- "Procrastination is the thief of time." Edward Young - Night Thoughts, 1742

Important and Urgent	Important but NOT Urgent		
Email for questions in course X	□ Problem Set 3 (initial attempt)		
Synthesis paper abstract (Wed.)	Send a few internship applications		
	Tutoring session preparation		
NOT Important but Urgent	NOT Important and NOT Urgent		
Validate carrel and rm reservations	Grocery shopping for ingredients		
□ "Video of ideas" self-study assign.	Read about other grad programs		
☐ Make additional gym appointments	□ Vacuum bedspace		
□ Follow up with literacy instructor	□ Consider visiting arts library		
Send email to volunteer organization	Practice plan for reading strategies		
Resume cal one course online	□ Wrap up intro stats lecture notes		
□ Submit synthesis paper abstract	Return a few library books		
	Find used bookshelf for apartment		
•	☐ Travel plans for winter break		
	— …		
	•		
11112	of Sectors.		

(Academic Success & Disability Services, University of Redlands, 2015. Retrieved from http://www.redlands.edu/globalassets/depts/student-affairs/academic-success/skills-worksheets/4-g uadrant_to-do_list_updated_2015.pdf)

"Time Management" (cont.)

	SUN	MON	TUE	WED	THU	FRI	SAT
•	28	29	30	1	2	3	4
GMT-05				[Applications Due]		PS5 Due	mmatter presentation
08:00			Submit PS 5 08:00 - 09:00	self study 08:00 - 10:00			
09:00			Giving Tuesday hangout 09:00 - 12:00		reserved study rm 09:00 - 11:00		
10:00		20-minute HGSE, 10:20		study reserved 10:00 - 12:00	Meet with Coordinator, 10:00	667 Introductory Statistics for	MMatter-Math Session (Computational Thinking)
11:00		Appointment at CAPS, 11:00	-	**Discussion/slides due MMat	prep/study/officehrs 11:00 - 13:00	10:15 - 12:45 STIT B21	10:00 - 11:30
12:00		Coffee with a Codex, 12:00	Colorado Grad Appointment, 12:			-	
13:00		study/write/etc. 12:40 - 16:00	study/read/write 12:30 - 14:00		Webinar: Computer Agents Help		MMatter-Mentor 13:00 - 14:30
14:00					Carpor Advising - GSE 14:20	study rm reserv MMatter Discus 14:00 - 16:00	
15:00			office hr UR general 15:30	Making College Diversity (webin	Appointment at UR Literacy		
16:00		Learning Resources Appointmen	Pottruck Appntmnt, 16:15		15:30 - 16:30	FNW 16:00 - 18:00	×
17:00		MCE webinar 17:00 - 18:00	(webinar, GSE) Teacher Educatio	tree decoration, 17:30	16:30 - 17:50	Virtual Meet & Greet with Dartr 17:00 - 18:00	
18:00		723 office hour, 18:00	(work on presentation slides)		Pottruck Appnmnt	finalize presentation & update	
19:00		study 18:30 - 19:30	18:00 - 19:25	pickup of dinn, 18:30 devot time zoom 1, 19:00	ed talks - Boulder	18:00 - 19:45	
20.00		Descention Annalatment	723-401 Multicultural Issues	devot time zoom 2, 19:30	19:00 - 20:00		
20:00		19:30 - 21:30 19:45 - 21:15 EDUC 120	19:30 - 21:30 EDUC 120	TC open house, 20:00	study 20:00 - 21:15		
21:00							Phone meeting family, 21:00
22:00					sleep 21:30 - 23:59		

Revisited: Basketball Jumpshots Vis. Design

(Resource by ESPN, "Signature Shots", retrieved from http://youtube.com/watch?v=zV7T2TLSz4k)

> "...but in this particular type of zone, there's really nothing you can do."

> > — commented reporter during the Jan. 2006 Raptors vs. Lakers game when Kobe Bryant scored 81 points

Revisited: Basketball Jumpshots Vis. Design (cont.)

(Resource by Comcast SportsNet/CSN, retrieved from http://www.youtube.com/watch?v=5nyBpt9tRsg)

(Youtube, Klay Thompson 37pt 3rd Quarter CSN Bay Area feed 1-23-15)

16

25

52 POINTS (12TH PLAYER IN WARRIORS HISTORY WITH 50+ POINTS)

References and Suggested Reading

Devlin, K. (2012). Introduction to Mathematical Thinking. *Keith Devlin*, Stanford University (http://profkeithdevlin.com).

Devlin, K. and Stanford University (on-going). Introduction to Mathematical Thinking. Coursera. (URL).

Borowski, D. (2021). The 10 Most Popular Coding Challenge Websites. *freeCodeCamp* (URL).

Project Euler (Tue, 30 Nov 2021). About Project Euler. http://projecteuler.net

Cormen et al. (2009). Introduction to Algorithms, 3rd Edition. The MIT Press.

Stroustrup and AT&T Bell Laboratories (1994). The Design of C++. *Computer History Museum (Youtube)*. (URL).

Carnegie Mellon (2008). Randy Pausch Lecture: Time Management. (Youtube) https://www.youtube.com/watch?v=oTugjssqOT0

Pausch and Zaslow (2008). "Managing Your Time: Words of Advice" from The Last Lecture. *Fast Facts*. Used by permission of Hyperion. All rights reserved (URL).

Thank You!

dsun2019@hotmail.com

